# **Supporting Information of**

# Hybrid polymers bearing oligo-L-lysine(carboxybenzyl)s: investigations of secondary structure formation in 2,2,2trifluoroethanol

Merve Basak Canalp<sup>a</sup> and Wolfgang H. Binder\*<sup>a</sup>

# **Table of contents**

- I. <sup>1</sup>H-NMR analyses of oligo-L-lysine(Z)s and ADMET polymers
- II. MALDI-ToF MS analyses of oligo-L-lysine(Z)s and ADMET polymers
- III. CD spectroscopy investigations in TFE
- IV. IR spectroscopy investigations in TFE
- V. Preparative GPC analyses of ADMET polymer A- $[Lys_{n=3}]_{m=3}$
- VI. Preparative GPC analyses of ADMET polymer A-[Lys<sub>n=24</sub>]<sub>m=4</sub>

### I. <sup>1</sup>H-NMR analyses of oligo-L-lysine(Z)s and ADMET polymers



Figure 1S. <sup>1</sup>H-NMR of  $Lys_{n=3}$  (in CDCl<sub>3</sub> and 15 vol.% TFA).



Figure 2S. <sup>1</sup>H-NMR of  $Lys_{n=6}$  (in CDCl<sub>3</sub> and 15 vol.% TFA).







Figure 4S.  $^{1}$ H-NMR of Lys<sub>n=24</sub> (in CDCl<sub>3</sub> and 15 vol.% TFA).



Figure 5S. <sup>1</sup>H-NMR of  $Lys_{n=30}$  (in CDCl<sub>3</sub> and 15 vol.% TFA).



Figure 6S. <sup>1</sup>H-NMR of  $A-[Lys_{n=3}]_{m=3}$  (in CDCl<sub>3</sub> and 15 vol.% TFA).











Figure 9S. <sup>1</sup>H-NMR of  $Lys_{n=12}$  and A-[ $Lys_{n=12}$ ]<sub>m=8</sub> (in CDCl<sub>3</sub> and 15 vol.% TFA).



Figure 10S.  ${}^{1}$ H-NMR of A-[Lys<sub>n=24</sub>]<sub>m=4</sub> (in CDCl<sub>3</sub> and 15 vol.% TFA).



Figure 115. <sup>1</sup>H-NMR of  $A-[Lys_{n=30}]_{m=7}$  (in CDCl<sub>3</sub> and 15 vol.% TFA).



#### II. MALDI-TOF MS analyses of oligo-L-Lysine(Z)s and ADMET polymers





**Figure 13S.** MALDI-ToF MS spectra of  $Lys_{n=6}$  along with simulated isotopic pattern.



Figure 14S. MALDI-ToF MS spectra of Lys<sub>n=12</sub> along with simulated isotopic pattern.



Figure 15S. MALDI-ToF MS spectra of  $Lys_{n=24}$  along with simulated isotopic pattern.



Figure 16S. MALDI-TOF MS spectra of Lys<sub>n=30</sub> along with simulated isotopic pattern.



Figure 175. MALDI-ToF MS spectra of  $A-[Lys_{n=3}]_{m=3}$  along with simulated isotopic pattern.



Figure 18S. MALDI-ToF MS spectra of A-[Lys<sub>n=6</sub>]<sub>m=12</sub> along with simulated isotopic pattern.



Figure 19S. MALDI-ToF MS spectra of  $A-[Lys_{n=30}]_{m=7}$ 

#### III. CD spectroscopy investigations in TFE

The measured CD spectroscopy data were reported as ellipticity ( $\theta$ ) [mdeg]. The percentage values of  $\alpha$ -helicity of the samples were calculated according to the Equation (1S), used for the estimation of the helicity of the peptide chains by Krannig and Sun et al.<sup>1</sup>:



**Figure 20S.** CD spectra of Lys<sub>n</sub>s in TFE (c= 0.2 mg/mL at 20 °C).



Figure 21S. IR spectra of A-[Lys<sub>n=3</sub>]<sub>m=3</sub> (c= 1 mg/mL and c= 5 mg/mL in TFE).



Figure 22S. IR spectra of  $Lys_{n=3}$ ,  $Lys_{n=6}$  and  $Lys_{n=12}$  (c: 5 mg/mL in TFE).



Figure 23S. IR spectra of  $Lys_{n=3}$  and  $A-Lys_{n=3}$  (c: 5 mg/mL in TFE).

| Table 1S.                                                                           |              |                                        |                        |                        |       | Fractions of          |
|-------------------------------------------------------------------------------------|--------------|----------------------------------------|------------------------|------------------------|-------|-----------------------|
| <b>A-[Lysn<sub>=3</sub>]<sub>m=3</sub></b><br>their M <sub>w</sub> , M <sub>n</sub> |              | A-[Lys <sub>n=3</sub> ] <sub>m=3</sub> | M <sub>n</sub> (g/mol) | M <sub>w</sub> (g/mol) | PDI   | along with<br>and PDI |
| values.                                                                             |              | F1+F2                                  | NA                     | NA                     | NA    |                       |
|                                                                                     | ractions (F) | F3+F4+F5                               | NA                     | NA                     | NA    |                       |
|                                                                                     |              | F6-9                                   | NA                     | NA                     | NA    |                       |
|                                                                                     |              | F10+F12                                | 23 253                 | 28 052                 | 1.206 |                       |
|                                                                                     |              | F13+F14                                | 12 773                 | 14 310                 | 1.12  |                       |
|                                                                                     |              | F15                                    | 9 192                  | 9 892                  | 1.076 |                       |
|                                                                                     |              | F16                                    | 7 230                  | 7 689                  | 1.063 |                       |
|                                                                                     |              | F17                                    | 5 780                  | 6 087                  | 1.053 |                       |
|                                                                                     |              | F18                                    | 4 692                  | 4 933                  | 1.051 |                       |
|                                                                                     | ш            | F19                                    | 3 950                  | 4 118                  | 1.043 |                       |
|                                                                                     |              | F20                                    | 3 418                  | 3 571                  | 1.045 |                       |
|                                                                                     |              | F21                                    | 2 841                  | 2 969                  | 1.045 |                       |
|                                                                                     |              | F22                                    | 2 680                  | 2 829                  | 1.056 |                       |
|                                                                                     |              | F23                                    | 2 383                  | 2 487                  | 1.043 |                       |
|                                                                                     |              | F24                                    | 2 157                  | 2 228                  | 1.033 |                       |
|                                                                                     |              | F25                                    | 1 933                  | 1 985                  | 1.027 |                       |

# V. Preparative GPC analyses of ADMET polymer A-[Lys<sub>n=3</sub>]<sub>m=3</sub>



Figure 24S. MALDI spectra of A-[Lys<sub>n=3</sub>]<sub>m=3</sub>: F24+F25, F21+F22+F23, F20, F19, F15, F13+F14.



Figure 25S. MALDI-ToF MS spectra of F24 and F20 along with their simulated isotopic patterns.

## VI. Preparative GPC analyses of ADMET polymer A-[Lys<sub>n=24</sub>]<sub>m=4</sub>

|               | $A\text{-}[Lys_{n=24}]_{m=4}$ | M <sub>n</sub> (g/mol) | M <sub>w</sub> (g/ mol) | PDI   |
|---------------|-------------------------------|------------------------|-------------------------|-------|
| Fractions (F) | F1-7                          | 15 897                 | 22 654                  | 1.425 |
|               | F8                            | 13 444                 | 31 193                  | 2.326 |
|               | F9                            | 23 863                 | 48 096                  | 2.016 |
|               | F10                           | 22 595                 | 33 355                  | 1.476 |
|               | F11                           | 22 970                 | 28 973                  | 1.261 |
|               | F12                           | 23 259                 | 26 916                  | 1.157 |
|               | F13                           | 19 078                 | 21 952                  | 1.151 |
|               | F14                           | 15 094                 | 16 855                  | 1.117 |
|               | F15                           | 12 136                 | 13 022                  | 1.073 |
|               | F16                           | 10 873                 | 11 640                  | 1.071 |
|               | F17                           | 8 711                  | 9 528                   | 1.094 |
|               | F18                           | 7 156                  | 7 711                   | 1.078 |

Table 2S. Fractions of A-[Lysn<sub>=24</sub>]<sub>m=4</sub> along with their  $M_w$ ,  $M_n$  and PDI values.



Figure 26S. MALDI-ToF MS spectra of F18.







Figure 28S. MALDI-ToF MS spectra of F16.



Figure 29S. MALDI-ToF MS spectra of F15.



Figure 30S.  $^1\text{H-NMR}$  of A-[Lys\_n=24]m=4 fraction, F13.

### References

1. K.-S. Krannig, J. Sun and H. Schlaad, *Biomacromolecules*, 2014, **15**, 978-984.