Supplementary Information

Rose Bengal used as photocatalyst: visible light-mediated

Friedel–Crafts alkylation of indoles with nitroalkenes in water

Zong-Yi Yu , Jing-Nan Zhao, Fan Yang, Xiao-Fei Tang, Yu-Feng Wu, Cun-Fei Ma, Bo Song, Lei Yun Qing-Wei Meng *

State Key Laboratory of Fine Chemicals, School of School of Chemical Engineering, Dalian University of Technology, Dalian 116024 China

mengqw@dlut.edu.cn

Table of Contents

1.	Screen of light source	3
2.	Cyclic voltammetry (CV) experiments	3
3.	Graphical Supporting Information	4
4.	NMR spectra	6

Table S1. Screen of light source

Entry	Light source	Y leid ^o (%)	
1	White LED	64.98	
2	Red LED	55.96	
3	Green LED	19.13	
4	Blue LED	46.31	
5	Purple LED	40.06	

^aN-methyl indole **1a** (39.4 mg, 0.3 mmol), (*E*)-2-nitroethenylbenzene **2a** (67.1 mg, 0.45 mmol) and catalyst were added to a test tube equipped with a stirring bar and dissolved in Water (3 mL) under the exposure of LED lamps. ^bIsolated yields.

Cyclic voltammetry (CV) experiments

Cyclic voltammetry (CV) experiments were performed in a CH Instruments Electrochemical Analyzer, a platinum mesh counter electrode, a glassy carbon working electrode, and a Ag/AgNO₃ (0.01M) reference electrode were used. Samples were prepared with a substrate concentration of 1 M in a 0.1 M tetraethylammonium hexafluorophosphate in acetonitrile electrolyte solution. From the result, $E_{1/2ox}(4) = -1.211$ V vs SCE (Figure S1) is higher than $E_{1/2red}(1a) = -1.977$ V vs SCE (Figure S2) so the photoredox reaction between Rose Bengal and 1a could occur spontaneously.

Figure S1. Cyclic voltammetry experiment of 1a. Experiment conditions: Init E = -2 V, High = 0, Low E = -2 V, Init P/N = P, Scan Rate = 0.1 V/s, Sample Interval = 0.001 V, Quiet Time = 2 s, Sensitivity = $1e^{-4} A/V$. $E_{1/2ox}(4) = -1.211 V$

Figure S2. Cyclic voltammetry experiment of 1a. Experiment conditions: Init E = -2.5 V, High = 0, Low E = -2.5 V, Init P/N = P, Scan Rate = 0.1 V/s, Sample Interval = 0.001 V, Quiet Time = 2 s, Sensitivity = $2e^{-4} A/V$

Graphical Supporting Information

Graphical Supporting Information for the 21W white LED lamps

Graphical Supporting Information for the luminous flux detector

Copies of NMR Spectra for Compounds 3a

¹H NMR copy of compound **3a**:

Copies of NMR Spectra for Compounds 3b

¹H NMR copy of compound **3b**:

Copies of NMR Spectra for Compounds 3c

¹H NMR copy of compound **3c**:

Copies of NMR Spectra for Compounds 3d

¹H NMR copy of compound **3d**:

Copies of NMR Spectra for Compounds 3e

¹H NMR copy of compound **3e**:

Copies of NMR Spectra for Compounds 3f

¹H NMR copy of compound **3f**:

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 4.0 3.5 3.0 2.5 2.0 1.0 0.5 0.0 -0.5 -1.0 5.5 1.5 6.0

Copies of NMR Spectra for Compounds 3g

¹H NMR copy of compound **3g**:

12

Copies of NMR Spectra for Compounds 3h

¹H NMR copy of compound **3h**:

Copies of NMR Spectra for Compounds 3i ¹H NMR copy of compound **3i**:

Copies of NMR Spectra for Compounds 3j ¹H NMR copy of compound **3j**:

¹³C NMR copy of compound **3j**:

Copies of NMR Spectra for Compounds 3k

¹H NMR copy of compound **3k**:

¹³C NMR copy of compound **3k**:

Copies of NMR Spectra for Compounds 31

¹H NMR copy of compound **31**:

Copies of NMR Spectra for Compounds 3m

¹H NMR copy of compound **3m**:

¹³C NMR copy of compound **3m**:

Copies of NMR Spectra for Compounds 3n

¹H NMR copy of compound **3n**:

¹³C NMR copy of compound **3n**:

Copies of NMR Spectra for Compounds 30

¹H NMR copy of compound **30**:

Copies of NMR Spectra for Compounds 3p

¹H NMR copy of compound **3p**:

Copies of NMR Spectra for Compounds 3q

¹H NMR copy of compound **3q**:

¹³C NMR copy of compound **3q**:

Copies of NMR Spectra for Compounds 3r

¹H NMR copy of compound **3r**:

Copies of NMR Spectra for Compounds 3s

¹H NMR copy of compound **3s**:

Copies of NMR Spectra for Compounds 3t

¹H NMR copy of compound **3t**:

¹³C NMR copy of compound **3t**:

Copies of NMR Spectra for Compounds 3u

¹H NMR copy of compound **3u**:

Copies of NMR Spectra for Compounds 3v

¹H NMR copy of compound **3v**:

