Supporting Information to "Synthesis and Characterization of Tannic Acid-PEG Hydrogel via Mitsunobu Polymerization

"

Chen Chen, ¹ Xi-wen Geng, ² Ya-hui Pan, ¹ Yu-ning Ma,^{*,1} Yu-xia Ma,^{*,1} Shu-zhong Gao¹, and Xiao-jun Huang³

¹Key Laboratory of New Material Research Institute, Department of

Acupuncture-Moxibustion and Tuina, Shandong University of Traditional

Chinese Medicine, Jinan 250355, China

²Key Laboratory of Stem Cell and Translational TCM, Experimental center,

Shandong University of Traditional Chinese Medicine, Jinan 250355, China

³MOE Key Laboratory of Macromolecular Synthesis and Functionalization,

Department of

Polymer Science and Engineering, Zhejiang University, Hangzhou 310027,

China

E-mail: myning0405@163.com; myxia1976@163.com

Table S1 Synthesis of TA-PEG hydrogel: Reagent ratios, ratio of functional groups and results on whether the sample gelled or not.

Sample	TA (mmol)	PEG 6000 (mmol)	Pyrogallol groups/hydroxyl groups	Gelation
TA-PEG	0.100	0.250	1.00	Y
TA-PEG-1	0.100	0.500	0.50	N
TA-PEG-2	0.100	0.125	2.00	Ν

Figure S1. The photo pictures of the reaction phenomena for the synthesis of TA-PEG hydrogel. (a) The heterogeneous solution of TA, PEG6000 and PPh₃ in CH₃CN; (b) Orange-coloured solution obtained at the end of DIAD titration at

0 °C; (c) The homogeneous solution after constant stirring for 1.5 h; (d) TA-PEG hydrogels.

Figure S2 ¹H NMR (a) and ¹³C NMR (b) results of the hydrolyzed TA-PEG hydrogel after 10 days in 10 mM PBS (pH 7.4) at 37 °C.

Figure S3. Morphology and swelling properties of TA-PEG hydrogel. (a) and (b) Typical FE-SEM micrographs of TA-PEG hydrogel; (c) Swelling percentage of TA-PEG hydrogel.

Figure S4. The metal-phenol complexion between Fe^{III} iron and TA-PEG hydrogel. (a) Photographs of TA-PEG hydrogel in treatment of FeCl₃ (0.002 M); (b) In-situ formation of metal-phenol complexion objected by UV-vis spectrum.

Table S2. Antibacterial activity data of TA-PEG hydrogel against E. coli and S	5.
<i>aureus</i> (*P<0.05, #P<0.1).	

Sample name	Inhibition zone(mm)		
	E. coli	S. aureus	
TA-PEG hydrogel	18.8*	21.7#	
Ag NPs@TA-PEG	19.2#	20.5#	
hydrogel			
PVA hydrogel	0	0	

Figure S5. Adhesive property of TA-PEG hydrogel (only one piece of the hydrogel was stained by *Eosin* Y).

Supporting Movies

Movie S1: In-situ formation of Ag NPs. The TA-PEG hydrogel were cut into pieces (1 cm in diameter and 3mm in height) and the concentration of $AgNO_3$ was 0.1 wt%. The movie is real-time.

Movie S2: In-situ formation of Au NPs. The TA-PEG hydrogel were cut into pieces (1 cm in diameter and 3mm in height) and the concentration of HAuCl₄ was 0.01 wt%. The movie is real-time.