Supplementary Information

Step-by-Step Monitoring of CVD-Graphene during Wet Transfer by

Raman Spectroscopy

Zehao Wu^a, Xuewei Zhang^a, Atanu Das^a, Jinglan Liu^a, Zhenxing Zou^a, Zilong Zhang^a, Yang Xia^b, Pei Zhao^{a.*}, Hongtao Wang^{a.*}

^a Center for X-Mechanics and Institute of Applied Mechanics, Zhejiang University, Hangzhou 310012, P. R. China

^b Institute of Microelectronics, Chinese Academy of Science, Beijing 100029, PR China

* Corresponding authors: peizhao@zju.edu.cn (P. Zhao),htw@zju.edu.cn (H. Wang)

Fig. S1. The Raman spectra of graphene on Cu (red) and after the background subtraction (black). With a 532-nm excitation laser, Cu substrate shows a strong fluorescence background and without a precise determination of the background line, the positions and lineshapes of graphene's peaks are difficult to be analyzed.

Fig. S2. The Raman spectrum of *n*-heptane, derived by directly measuring the liquid. It shows no overlap peaks for the graphene G-peak region. Moreover, when *n*-heptane is used in graphene transfer, the very small amount of n-heptane shows no observable peaks when compared with

that from graphene (as shown in Fig. 1c), therefore has no influence in the data analysis in the manuscript.