Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Supporting Information

The construction of a Direct Z-Scheme Bi₂WO₆/NH₂-UiO-66 nanocomposite as an efficient visible-light-driven photocatalyst for NO removal

- 4
- 5 Yiqiu Liu^{a,b}, Yi Zhou^{a,b}, Qijun Tang^{a,b}, Qian Li^{a,b}, Si Chen^{a,b}, Zhuxing Sun^c, Haiqiang
 6 Wang ^{a,b*}
- 7 a Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education,
- 8 College of Environmental & Resources Science, Zhejiang University, Hangzhou 310058, P.R.
- 9 China
- 10 ^b Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas
- 11 Pollution Control, Hangzhou, 311202, P. R. China
- 12 ° School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai
- 13 200240, China
- 14

^{*} Corresponding author:

⁽H. Wang) E-mail: haiqiangwang@zju.edu.cn ; Tel. / Fax: +86-571-87953088.

Full postal address: Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, Hangzhou 310058, P.R. China.

Figure S2. TEM image for pristine Bi₂WO₆.

22

Figure S3. Pore size distributions for Bi₂WO₆, NH₂-UiO-66, BWO/0.5NU and BWO/2NU.

23 Figure S4. Micropore size distributions for Bi₂WO₆, NH₂-UiO-66, BWO/0.5NU and BWO/2NU.

Figure S7. The photocatalytic efficiency of NO removal on different samples.

Catalyst	NO concentration / ppb	NO removal /%	Continuous Flow Rate	Light source	Source
Bi/g-C ₃ N ₄ -HA	500	60.8	2.4 L/min	150 W tungsten halogen lamp (>420 nm)	[1]
CQDs/ZnFe ₂ O ₄	400	38	3 L/min	300 W Xe lamp (>420 nm)	[2]
Fe/TiO ₂	400	45-60	1.2 L/min	500 W Xe lamp (>420 nm)	[3]
ZnO	400	77	4 L/min	UV-LED $(\lambda=365 \text{ nm})$	[4]
X-B-PCN	500	44.1	2.4 ml/min	300 W halogen lamp	[5]
g-C ₃ N ₄ /TiO ₂	1000	42 38	3 L/min 3 L/min	UV Visible light	[6]
Bi/BiOBr	600	63.53	2.4 ml/min	150 W tungsten halogen lamp (>420 nm)	[7]
pCN/TiO ₂	400	25.8	1.2 L/min	300 W Xe lamp (>420 nm)	[8]
Au/Bi ₂ MoO ₆ / Bi ₂ WO ₆	1000	64.33	0.41 L/min	300 W Xe lamp (>420 nm)	[9]

 Table S1. Summary of studies on photocatalysts for NO removal application

37

38 References

39 [1] G. Jiang, X. Li, M. Lan, T. Shen, X. Lv, F. Dong, S. Zhang, Monodisperse bismuth

- 40 nanoparticles decorated graphitic carbon nitride: Enhanced visible-light-response photocatalytic
- 41 NO removal and reaction pathway, *Appl. Catal.*, *B*, 2017, **205**, 532-540.
- 42 [2] Y. Huang, Y. Liang, Y. Rao, D. Zhu, J.J. Cao, Z. Shen, W. Ho, S.C. Lee, Environment-
- 43 Friendly Carbon Quantum Dots/ZnFe2O4 Photocatalysts: Characterization, Biocompatibility, and
- 44 Mechanisms for NO Removal, Environ. Sci. Technol., 2017, 51, 2924-2933.
- 45 [3] J. Ma, H. He, F. Liu, Effect of Fe on the photocatalytic removal of NO over visible light
- 46 responsive Fe/TiO₂ catalysts, *Appl. Catal.*, *B*, 2015, **179**, 21-28.
- 47 [4] X. Chen, H. Zhang, D. Zhang, Y. Miao, G. Li, Controllable synthesis of mesoporous multi-
- 48 shelled ZnO microspheres as efficient photocatalysts for NO oxidation, *Appl. Surf. Sci.*, 2018, 435,
 49 468-475.
- 50 [5] J. Cao, J. Zhang, X.a. Dong, H. Fu, X. Zhang, X. Lv, Y. Li, G. Jiang, Defective borate-
- 51 decorated polymer carbon nitride: Enhanced photocatalytic NO removal, synergy effect and
- 52 reaction pathway, Appl. Catal., B, 2019, 249, 266-274.

- 53 [6] T. Giannakopoulou, I. Papailias, N. Todorova, N. Boukos, Y. Liu, J. Yu, C. Trapalis, Tailoring
- 54 the energy band gap and edges' potentials of $g-C_3N_4/TiO_2$ composite photocatalysts for NO_x 55 removal, *Chem. Eng. J.*, 2017, **310**, 571-580.
- 56 [7] X.a. Dong, W. Zhang, Y. Sun, J. Li, W. Cen, Z. Cui, H. Huang, F. Dong, Visible-light-induced
- 57 charge transfer pathway and photocatalysis mechanism on Bi semimetal@defective BiOBr
- 58 hierarchical microspheres, J. Catal., 2018, 357, 41-50.
- 59 [8] Y. Huang, P. Wang, Z. Wang, Y. Rao, J.-j. Cao, S. Pu, W. Ho, S.C. Lee, Protonated g-
- $60 C_3N_4/Ti^{3+}$ self-doped TiO₂ nanocomposite films: Room-temperature preparation, hydrophilicity,
- 61 and application for photocatalytic NO removal, *Appl. Catal., B*, 2019, **240**, 122-131.
- 62 [9] J. Jia, X. Du, E. Liu, J. Wan, C. Pan, Y. Ma, X. Hu, J. Fan, Highly efficient and stable
- 63 Au/Bi₂MoO₆/Bi₂WO₆ heterostructure with enhanced photocatalytic activity for NO gas removal
- 64 under visible light irradiation, J. Phys. D: Appl. Phys., 2017, 50, 145103.
- 65