†Electronic Supporting Information

for

Aggregation-induced emission compounds based on 9, 10-

diheteroarylanthracene and their applications in cell imaging

Renjie Wang[§], Yunfei Liang[§], Gang Liu, Shouzhi Pu*

Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal

University, Nanchang 330013, P. R. China.

*Corresponding author: E-mail address: pushouzhi@tsinghua.org.cn (S. Pu). Phone: +86 791

83831996.

[§] These authors contributed equally.

Table of Contents

Figure S1. NMR spectra data for DTA: (A) ¹ H-NMR spectrum; (B) ¹³ C-NMR spectrum.	3
Figure S2. NMR spectra data for DFA: (A) ¹ H-NMR spectrum; (B) ¹³ C-NMR spectrum.	4
Figure S3. NMR spectra data for DPA: (A) ¹ H-NMR spectrum; (B) ¹³ C-NMR spectrum.	5
Figure S4. NMR spectra data for DBPA: (A) ¹ H-NMR spectrum; (B) ¹³ C-NMR spectrum.	6
Figure S5. HRMS-ESI spectra of DTA.	7
Figure S6. HRMS-ESI spectra of DBPA.	8
Figure S7. HRMS-ESI spectra of DPA.	9
Figure S8. (A) Normalized absorption spectra of DTA (A), DFA (B), DPA (C) and DBPA (D)) (C
= 2.0×10^{-5} mol/L) in different solvents.	10
Figure S9. PL spectra of DTA (A), DFA (B), DPA (C) and DBPA (D) ($C = 2.0 \times 10^{-5} \text{ mol/I}$	L) in
different solvents ($\lambda_{ex} = 355 \text{ nm}$).	11
Figure S10. Changes of fluorescence spectra and color of DTA (A), DPA (B) and DBPA (C)) (20
μ M) in the different DMF/H ₂ O fraction solutions (λ_{ex} = 355 nm).	12

Figure S11. SEM images of DHA compound: (A) DTA; (B) DFA; (C) DPA and (D) D	BPA (20
μ M) formed from DMF/water mixture (f_w =90%).	13
Figure S12. Size distribution curve of DHA compounds: (A) DTA, (B) DFA and (C) DP	A (20
μ M) in DMF/water mixtures with 90% volume fraction of water.	14
Figure S13. Decay curve of DHA compounds: (A) DTA, (B) DFA and (C) DPA, and D	BPA (D)
in solid state ($\lambda_{ex} = 355 \text{ nm}$).	15
Figure S14. ORTEP drawings of crystal of DTA showing about 30% probability disp	lacement
ellipsoids.	16
Figure S15. ORTEP drawings of crystal of DFA showing about 30% probability disp	lacement
ellipsoids.	17
Figure S16. ORTEP drawings of crystal of DPA showing about 30% probability disp	lacement
ellipsoids.	18
Figure S17. ORTEP drawings of crystal of DBPA showing about 30% probability disp	lacement
ellipsoids.	19
Figure S18. % cell viability of HeLa cells treated with different concentrations $(10 \rightarrow 5)$	0 µM) of
DPA for 24 h determined by MTT assay.	20
Table S1. Absorption and fluorescence spectral properties of DHA compounds in	different
solvents.	21
Table S2. Crystal data for DHA compounds.	22
Table S3. Symbolic Z-Matrix of DTA.	23
Table S4. Total energies of DTA.	24
Table S5. Symbolic Z-Matrix of DFA.	25
Table S6. Total energies of DFA.	26
Table S7. Symbolic Z-Matrix of DPA.	27
Table S8. Total energies of DPA.	28
Table S9. Symbolic Z-Matrix of DBPA.	29
Table S10. Total energies of DBPA.	31

Figure S1. NMR spectra data for DTA: (A) ¹H-NMR spectra; (B) ¹³C-NMR spectra.

Figure S2. NMR spectra data for DFA: (A) ¹H-NMR spectra; (B) ¹³C-NMR spectra.

Figure S3. NMR spectra data for DPA: (A) ¹H-NMR spectra; (B) ¹³C-NMR spectra.

Figure S4. NMR spectra data for DBPA: (A) ¹H-NMR spectra; (B) ¹³C-NMR spectra.

Figure S5. HRMS-ESI spectra of DTA.

Figure S6. HRMS-ESI spectra of DBPA.

Figure S7. HRMS-ESI spectra of DPA.

Figure S8. (A) Normalized absorption spectra of DTA (A), DFA (B), DPA (C) and DBPA (D) ($C = 2.0 \times 10^{-5} \text{ mol/L}$) in different solvents.

Figure S9. PL spectra of DTA (A), DFA (B), DPA (C) and DBPA (D) ($C = 2.0 \times 10^{-5} \text{ mol/L}$) in different solvents ($\lambda_{ex} = 355 \text{ nm}$).

Figure S10. Changes of fluorescence spectra and color of DTA (A), DPA (B) and DBPA (C) (20 μ M) in the different DMF/H₂O fraction solutions (λ_{ex} = 355 nm).

(C)

(A)

(B)

Figure S11. SEM images of DHA compound: (A) DTA; (B) DFA; (C) DPA and (D) DBPA (20

 μ M) formed from DMF/water mixture (f_w =90%).

Figure S12. Size distribution curve of DHA compounds: (A) DTA, (B) DFA and (C) DPA (20 μM) in DMF/water mixtures with 90% volume fraction of water.

Figure S13. Decay curve of DHA compounds: (A) DTA, (B) DFA and (C) DPA, and DBPA (D) in solid state ($\lambda_{ex} = 355$ nm).

Figure S14. ORTEP drawings of crystal of DTA showing about 30% probability displacement

ellipsoids.

Figure S15. ORTEP drawings of crystal of DFA showing about 30% probability displacement

ellipsoids.

Figure S16. ORTEP drawings of crystal of DPA showing about 30% probability displacement

ellipsoids.

Figure S17. ORTEP drawings of crystal of DBPA showing about 30% probability displacement ellipsoids.

Figure S18. % cell viability of HeLa cells treated with different concentrations ($10 \rightarrow 50 \ \mu$ M) of DPA for 24 h determined by MTT assay.

				sorrents.				
	DT	A	DF	A	DPA	L	D	BPA
Solvents	$\lambda_{ m em}(m nm)^a$ $I_{ m max}$	$\lambda(nm)^b$	$\lambda_{ m em} ({ m nm})^{ m a}$ $I_{ m max}$	$\lambda (nm)^b$	$\lambda_{\rm em} ({\rm nm})^{\rm a} I_{\rm max}$	$\lambda \ (nm)^b$	$\lambda_{ m em}({ m nm})^a$ $I_{ m max}$	$\lambda (nm)^b$
<i>n</i> -Hexane	467, 53.59	376, 396	448, 270.9	393	512, 61.95	394	464,3835	376, 396
DCM	470, 42.76	379, 399	459, 30.09	395	522, 97.51	396	470,5202	376, 396
THF	468, 45.16	378, 398	481, 28.2	393	508, 312.4	396	469,5633	374, 394
Acetonitrile	468, 41.5	377, 397	468, 21.02	392	519, 112.6	394	470,5850	375, 395
DMSO	473, 53.36	381, 401	473, 52.14	398	516, 308.4	397	475,6050	378, 398
DMF	476, 99.21	379, 399	488, 72.62	398	525, 386.5	398	473,6734	375, 395
a	Fluorescence	emi	ssion	wavelength;	b	Absorpt	on	wavelength.

Table S1. Absorption and fluorescence spectral properties of **DHA** compounds in different solvents.

	Compounds			
-	DTA	DFA	DPA	DBPA
Formula	$C_{22}H_{14}S_2$	$C_{22}H_{14}O_2$	$C_{22}H_{16}N_2$	$C_{32}H_{32}N_2O_4$
Formula weight	342.45	310.33	308.37	508.60
Temperature	296(2)	296(2)	296(2)	296(2)
Crystal system	Monoclinic	Monoclinic	Orthorhombic	Monoclinic
Space group	P2(1)/c	P2(1)/n	Pbcn	P2(1)/n
Unit cell dimensions <i>a</i> (Å)	9.8461(12)	9.1632(14)	18.3966(19)	9.3335(10)
<i>b</i> (Å)	9.2276(11)	8.9491(14)	11.3788(12)	10.1341(12)
<i>c</i> (Å)	10.1454(12)	10.3448(16)	7.4311(8)	15.0800(18)
α (°)	90.00	90.00	90.00	90.00
β (°)	115.242(2)	111.284(2)	90	101.550(2)
γ (°)	90.00	90.00	90.00	90.00
Volume (Å ³)	833.75(17)	790.4(2)	1555.6(3)	1397.5(3)
Z	2	2	4	2
Density (calcd.) (g/cm ³)	1.364	0.083	1.317	1.209
Goodness-of-fit on F^2	2.478	1.049	0.942	1.015
Final $R_I[I > 2s(I)]$	0.1595	0.0421	0.0449	0.0487
$wR_2[I > 2s(I)]$	0.4885	0.1127	0.1228	0.1205
R_1 (all data)	0.1733	0.0577	0.0644	0.0803
wR_2 (all data)	0.5128	0.1248	0.1433	0.1432

 Table S2. Crystal data for DHA compounds.

S-0.789060.8125C-1.509562.2483H-1.547662.8618C-0.209064.4334C0.301943.2901C1.675843.1886C2.199642.0268H1.638041.3139C-0.635762.1938C-1.580464.5635H-2.164763.8639C3.525641.9659H3.858441.2184	0 -2.3208 -3.0187 0.0853 -0.5515 -0.8635 -1.5151 -1.719 -0.9351 0.4588 0.2736 -1.8381 -2.2801
C-1.509562.2483H-1.547662.8618C-0.209064.4334C0.301943.2901C1.675843.1886C2.199642.0268H1.638041.3139C-0.635762.1938C-1.580464.5635H-2.164763.8639C3.525641.9659H3.858441.2184	-2.3208 -3.0187 0.0853 -0.5515 -0.8635 -1.5151 -1.719 -0.9351 0.4588 0.2736 -1.8381 -2.2801
H-1.547662.8618C-0.209064.4334C0.301943.2901C1.675843.1886C2.199642.0268H1.638041.3139C-0.635762.1938C-1.580464.5635H-2.164763.8639C3.525641.9659H3.858441.2184	-3.0187 0.0853 -0.5515 -0.8635 -1.5151 -1.719 -0.9351 0.4588 0.2736 -1.8381 -2.2801
C-0.209064.4334C0.301943.2901C1.675843.1886C2.199642.0268H1.638041.3139C-0.635762.1938C-1.580464.5635H-2.164763.8639C3.525641.9659H3.858441.2184	0.0853 -0.5515 -0.8635 -1.5151 -1.719 -0.9351 0.4588 0.2736 -1.8381 -2.2801
C0.301943.2901C1.675843.1886C2.199642.0268H1.638041.3139C-0.635762.1938C-1.580464.5635H-2.164763.8639C3.525641.9659H3.858441.2184	-0.5515 -0.8635 -1.5151 -1.719 -0.9351 0.4588 0.2736 -1.8381 -2.2801
C1.675843.1886C2.199642.0268H1.638041.3139C-0.635762.1938C-1.580464.5635H-2.164763.8639C3.525641.9659H3.858441.2184	-0.8635 -1.5151 -1.719 -0.9351 0.4588 0.2736 -1.8381 -2.2801
C2.199642.0268H1.638041.3139C-0.635762.1938C-1.580464.5635H-2.164763.8639C3.525641.9659H3.858441.2184	-1.5151 -1.719 -0.9351 0.4588 0.2736 -1.8381 -2.2801
H1.638041.3139C-0.635762.1938C-1.580464.5635H-2.164763.8639C3.525641.9659H3.858441.2184	-1.719 -0.9351 0.4588 0.2736 -1.8381 -2.2801
C-0.635762.1938C-1.580464.5635H-2.164763.8639C3.525641.9659H3.858441.2184	-0.9351 0.4588 0.2736 -1.8381 -2.2801
C-1.580464.5635H-2.164763.8639C3.525641.9659H3.858441.2184	0.4588 0.2736 -1.8381 -2.2801
H-2.164763.8639C3.525641.9659H3.858441.2184	0.2736 -1.8381 -2.2801
C 3.52564 1.9659 H 3.85844 1.2184	-1.8381 -2.2801
H 3.85844 1.2184	-2.2801
C -2.05426 5.6634	1.0691
Н -2.95906 5.7256	1.2738
C -2.26556 0.8826	-2.0455
Н -2.91836 0.5808	-2.6346
C -1.96156 0.185	-0.9819
Н -2.38366 -0.6212	-0.7881
S 3.14484 7.8937	-0.4331
C 3.86534 6.4579	1.8876
Н 3.90334 5.8444	2.5856
C 2.56474 4.2728	-0.5185
C 2.05384 5.4161	0.1184
C 0.67984 5.5176	0.4304
C 0.15604 6.6794	1.0819
Н 0.71764 7.3923	1.2858
C 2.99144 6.5124	0.502
C 3.93614 4.1427	-0.892
Н 4.52044 4.8423	-0.7067
C -1.16986 6.7403	1.4049
Н -1.50276 7.4878	1.8469
C 4.40994 3.0428	-1.5022
Н 5.31484 2.9806	-1.7069
C 4.62134 7.8236	1.6123
Н 5.27414 8.1254	2.2015
C 4.31734 8.5212	0.5488
Н 4.73944 9.3274	0.3549

Table S3. Symbolic Z-Matrix of DTA.

Table S4. Total energies of DTA.

Zero-point correction	0.287010 (Hartree/Particle)
Thermal correction to Energy	0.305716
Thermal correction to Enthalpy	0.30666
Thermal correction to Gibbs Free Energy	0.237965
Sum of electronic and zero-point Energies	-1643.074475
Sum of electronic and thermal Energies	-1643.055769
Sum of electronic and thermal Enthalpies	-1643.054825
Sum of electronic and thermal Free Energies	-1643.12352

0	-0.66406	0.89062	0
С	0.18384	3.12212	-2.3226
С	0.70494	2.00772	-1.6363
С	1.04784	4.22072	-2.6496
С	-0.18586	0.88582	-1.2682
С	-1.18796	3.19762	-2.7205
Н	-1.75626	2.48492	-2.5363
С	0.48034	5.35342	-3.3177
Н	1.02234	6.08062	-3.5236
С	-0.83306	5.38512	-3.6557
Н	-1.18156	6.13322	-4.0843
С	-1.67556	4.28912	-3.3612
Н	-2.57166	4.31662	-3.6088
С	-1.44846	-0.23438	0.1111
Н	-1.90516	-0.48278	0.8827
С	-1.46856	-0.90108	-0.9945
Н	-1.92576	-1.69328	-1.1615
С	-0.65646	-0.18328	-1.9006
Н	-0.48126	-0.41858	-2.7834
0	3.78114	5.28632	-3.9342
С	2.93314	3.05482	-1.6116
С	2.41214	4.16922	-2.2979
С	2.06914	1.95622	-1.2845
С	3.30284	5.29112	-2.666
С	4.30504	2.97932	-1.2137
Н	4.87324	3.69202	-1.3978
С	2.63664	0.82352	-0.6164
Н	2.09474	0.09632	-0.4106
С	3.95004	0.79182	-0.2785
Н	4.29854	0.04372	0.1501
С	4.79254	1.88782	-0.573
Н	5.68864	1.86032	-0.3254
С	4.56544	6.41132	-4.0453
Н	5.02224	6.65972	-4.8169
С	4.58554	7.07802	-2.9397
Н	5.04274	7.87022	-2.7727
С	3.77354	6.36022	-2.0336
Н	3.59824	6.59552	-1.1508

Table S5. Symbolic Z-Matrix of DFA.

Table S6. Total energies of DFA.

Zero-point correction	0.293742 (Hartree/Particle)
Thermal correction to Energy	0.311371
Thermal correction to Enthalpy	0.312315
Thermal correction to Gibbs Free Energy	0.246901
Sum of electronic and zero-point Energies	-997.097435
Sum of electronic and thermal Energies	-997.079805
Sum of electronic and thermal Enthalpies	-997.078861
Sum of electronic and thermal Free Energies	-997.144276

C	1 (70(0	1 72 427	0
	-1.6/969	1./343/	0 40(2
H	-0.92709	2.09997	0.4063
U	-1.68609	0.92397	-1.0775
H	-0.93809	0.62997	-1.5455
C	-3.03119	0.59977	-1.3/11
H	-3.32679	0.05427	-2.0635
C	-3.82229	1.23827	-0.4452
C	-5.28669	1.24047	-0.2359
C	-5.98459	0.02147	-0.0981
C	-5.31779	-1.23653	-0.1479
Н	-4.39249	-1.25593	-0.2406
С	-5.99569	-2.40093	-0.0647
Н	-5.53519	-3.20783	-0.1054
С	-5.99159	2.46037	-0.1427
С	-5.35749	3.72347	-0.356
Н	-4.46309	3.74337	-0.6099
С	-6.02239	4.89067	-0.1977
Н	-5.58899	5.69647	-0.3645
N	-2.96829	1.92187	0.3871
H	-3.23859	2.47807	1.0574
С	-11.71089	1.73437	0.0193
Н	-12.46349	2.09997	-0.387
С	-11.70449	0.92397	1.0968
Н	-12.45249	0.62997	1.5647
С	-10.35939	0.59977	1.3903
Н	-10.06379	0.05427	2.0828
С	-9.56829	1.23827	0.4644
С	-8.10389	1.24047	0.2551
С	-7.40599	0.02147	0.1174
С	-8.07279	-1.23653	0.1672
Н	-8,99809	-1.25593	0.2599
С	-7.39489	-2.40093	0.0839
H	-7 85539	-3 20783	0 1247
C	-7 39899	2.46037	0.162
C	-8 03309	3 72347	0.3752
~ H	-8 92749	3 74337	0.6291
C	_7 36810	4 89067	0.02)1
~ Н	_7.80150	5 69647	0.217
N	-7.00132	1 02127	0.3630
1 Y	-10.42227	1.72107	-0.30/9

 Table S7. Symbolic Z-Matrix of DPA.

 Table S8. Total energies of DPA.

Zero-point correction	0.318959 (Hartree/Particle)
Thermal correction to Energy	0.337061
Thermal correction to Enthalpy	0.338005
Thermal correction to Gibbs Free Energy	0.271924
Sum of electronic and zero-point Energies	-957.352745
Sum of electronic and thermal Energies	-957.334642
Sum of electronic and thermal Enthalpies	-957.333698
Sum of electronic and thermal Free Energies	-957.39978

С	-0.5567	-0.44714	-3.6222
Н	-0.97039	-0.78202	-4.56534
С	0.55398	0.4527	-3.62195
Н	0.96698	0.78899	-4.5649
С	1.08616	0.88275	-2.44199
Н	1.92773	1.57158	-2.4456
С	0.56183	0.45297	-1.18235
С	-0.56273	-0.45108	-1.18261
С	-1.08799	-0.87897	-2.44249
Н	-1.92954	-1.56782	-2.4465
С	1.11352	0.88902	0.0387
С	2.23497	1.86208	0.03903
С	2.14808	3.22988	0.07159
Н	1.21936	3.78221	0.10382
С	3.46953	3.77663	0.03987
Н	3.73727	4.82301	0.0531
С	4.34199	2.73076	-0.01178
Н	5.41737	2.68486	-0.04379
С	4.27696	0.29879	-0.04488
С	3.87584	-2.1219	-0.03989
С	2.56151	-2.8985	0.03001
Н	2.76516	-3.97216	0.0039
Н	2.01966	-2.67221	0.95296
Н	1.91739	-2.64574	-0.816
С	4.74692	-2.40527	1.18776
Н	4.96729	-3.47302	1.23642
Н	5.69066	-1.85847	1.14855
Н	4.21535	-2.12152	2.10356
С	4.60617	-2.39091	-1.35743
Н	4.83922	-3.45861	-1.43305
Н	3.97229	-2.13157	-2.20892
Н	5.53718	-1.83142	-1.41988
Ν	3.60955	1.54617	-0.01227
0	5.4815	0.2303	-0.10245
0	3.41124	-0.70722	-0.00702
С	0.55673	0.43435	3.69908
Н	0.98324	0.76922	4.64222
С	-0.55396	-0.43988	3.69883
Н	-0.97976	-0.77617	4.64178
С	-1.09895	-0.86992	2.51887
Н	-1.94052	-1.54595	2.52248
С	-0.56181	-0.45294	1.25922

Table S9. Symbolic Z-Matrix of DBPA.

С	0.56275	0.4511	1.25949
С	1.10082	0.86618	2.51937
Н	1.94239	1.54222	2.52338
С	-1.1135	-0.88899	0.03818
С	-2.23494	-1.86206	0.03785
С	-2.14803	-3.22987	0.06935
Н	-1.21931	-3.78219	0.10119
С	-3.46948	-3.77663	0.03701
Н	-3.7372	-4.82302	0.0494
С	-4.34195	-2.73078	-0.01384
Н	-5.41733	-2.68489	-0.04589
С	-4.27696	-0.2988	-0.04482
С	-3.8759	2.12189	-0.03699
С	-2.5616	2.89853	0.03406
Н	-2.76528	3.97218	0.00893
Н	-1.91723	2.64663	-0.81201
Н	-2.01998	2.67141	0.95695
С	-4.60604	2.39243	-1.35433
Н	-4.83926	3.46017	-1.42862
Н	-5.53695	1.83279	-1.41764
Н	-3.97195	2.13431	-2.20606
С	-4.74719	2.40369	1.19086
Н	-4.96745	3.47138	1.24086
Н	-4.21581	2.11874	2.10642
Н	-5.69099	1.85698	1.15078
Ν	-3.60952	-1.54618	-0.01335
0	-5.4815	-0.23034	-0.10255
0	-3.41127	0.70722	-0.0058

Table S10. Total energies of DBPA.

Zero-point correction	0.571287 (Hartree/Particle)
Thermal correction to Energy	0.606308
Thermal correction to Enthalpy	0.607252
Thermal correction to Gibbs Free Energy	0.501016
Sum of electronic and zero-point Energies	-1648.917864
Sum of electronic and thermal Energies	-1648.882843
Sum of electronic and thermal Enthalpies	-1648.881899
Sum of electronic and thermal Free Energies	-1648.988135