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    This supporting information explains the detailed methodology used to compute the elastic 
constants of amorphous films.

    In case of crystalline systems, elastic constants can be determined by computing the 
energies of deformed unit cells. For cubic type phases, distortions with tetragonal and 
orthorhombic shear, and isotropic distortion along the three lattice vectors require three 
independent elastic constants C11, C12, and C44 (all elastic constants are expressed using the 
Voigt notations1). For the tetragonal phases, six different deformation modes need to compute 
C11, C12, C13, C33, C44, and C66. For expansion along three high-symmetry directions, three 
monoclinic distortions, and three orthorhombic distortions needs to compute nine independent 
elastic constants. 
    Next, we discuss the methodology used to compute the elastic constants of amorphous 
alloys because the amorphous phases are isotropic. Elastic constants, Cij can be obtained by 
computing the energies of the deformed unit cells; the deformation strain tensor, eij with six 
independent components is represented using Voigt notation.
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    In order to obtain three independent elastic constants C11, C12, and C44 for cubic structure, 
orthorhombic, isotropic and monoclinic distortions are applied. 
    The total energy change related to the strain tensor gives
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where E0 and E(eij) are the internal energies of the initial and the strained lattice, respectively; 
V is the volume of the unstrained lattice; σij is the stress; O(eij

3) indicates the neglected terms 
in the polynomial expansion. The Elastic stiffness tensors are calculated by the computation of 
the derivatives of the total energy respect to the applied strain.
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    Once the stiffness tensor, Cijkl, are obtained, elastic properties such as poisson’s ratio, 
Young’s, bulk, and shear moduli can be calculated by using Voight-Reuss-Hill approximation.2 
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