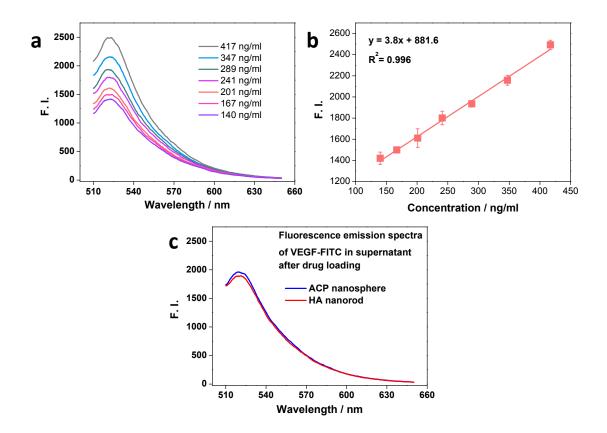
The Mineralization, Drug Release and *In Vivo* Bone Defect Repair Properties of Calcium Phosphate Nanomaterials/PLA Modified Tantalum Scaffolds

Rong Zhou,^{1,2,#} Hai-Jian Ni,^{3,#} Jin-Hui Peng,^{1,*} Ning Liu,¹ Shu Chen,¹ Jia-Hua Shao,¹ Qi-Wei Fu,¹ Jun-Jian Liu,³ Feng Chen,^{3,*} and Qi-Rong Qian^{1,*}

¹ Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P.R. China

² Department of Orthopaedics, 72nd Group Army Hospital of PLA, No. 9 Chezhan
Road, Wuxing District, Huzhou, 313000, P.R. China

³ Department of Orthopedics, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China


[#] These authors contributed equally to this work

Correspondence:

Email: pengjinhui20110@smmu.edu.cn (J.H. Peng)

fchen@tongji.edu.cn (F. Chen)

qianqr@smmu.edu.cn (Q.R. Qian)

Fig. S1 The measurement of VEGF-FITC adsorped onto ACP nanospheres and HA nanorods. (a) The fluorescence emission spectra of VEGF-FITC solution with different concentration; (b) calibration curves obtained from (a); (c) The fluorescence emission spectra of VEGF-FITC in the supernatant of drug-loading solution, after centrifugal separation of ACP nanospheres and HA nanorods.