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1. General Procedures

Metal salts and solvents were purchased from Meryer and used directly without further
purification. All reactions were performed under dry oxygen-free dinitrogen atmospheres using
standard Schlenk techniques. Physical measurements: NMR: AVANCE III AV500. 500
spectrometer ('H, 500 MHz) at 298 K; IR: Nicolet IS10 spectrometer; Powder XRD:
DSADVANCE. Elemental analyses (C, H, N) of compounds were carried out on a EURO
EA3000 elemental analysis after dried in an oven at 120°C for 2 h. Melting points were obtained
in sealed glass capillaries under dinitrogen and are uncorrected. The thermogravimetric analyses
(TA) were carried out on a TA Instruments Q600. Field emission scanning electron microscopy
(FESEM) images and EDX spectra were recorded on a Nova NanoSEM 200 scanning electron
microscope. Conductivity measurement was carried out with a DDS-11 conductivity bridge for

10 M solution in CH;CN. Absorption spectra were obtained on a UV-3600 spectrophotometer.

Photophysical Studies Visible and NIR luminescence spectra were recorded on a FLS 980
fluorimeter. The light source for the spectra was a 450 W xenon arc lamp with continuous
spectral distribution from 190 to 2600 nm. Liquid nitrogen cooled Ge PIN diode detector was
used to detect the NIR emissions from 800 nm to 1700 nm. The temporal decay curves of the
fluorescence signals were stored by using the attached storage digital oscilloscope. The quantum
yields (®.,) were obtained by using an integrating sphere, according to eqn @Dy, = Nem / Nyps,
where N, and N are the numbers of emitted and absorbed photons, respectively. Systematic
errors have been deducted through the standard instrument corrections. All the measurements

were carried out at room temperature.
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2. The IR spectra of the free ligand H,L and 1
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Figure S1. The IR spectra of the free ligand H,L and 1.

3. Powder XRD patterns of 1
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Figure S2. Powder XRD patterns of 1.
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4. The thermogravimetric analysis of 1
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Figure S3. The thermogravimetric analysis of 1.

5. The NIR lanthanide luminescence lifetime of 1
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Figure S4. The NIR lanthanide luminescence lifetime of 1 in CH;CN.
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6. NIR lanthanide luminescent sensing of 1 towards metal ions
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Figure S5. NIR lanthanide Luminescent sensing of 1 (60 uM) towards metal ions.
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7. Visible emission response of 1 to metal ions
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Figure S6. Visible emission response of 1 (60 uM) to metal ions.
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8. The radii of added metal ions
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Figure S7. The radii of added metal ions.

9. UV-Vis spectra of 1 with the addition of Co?" ion
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Figure S7. UV-Vis spectra of 1 (60 uM) with the addition of Co?" ion.
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10. X-Ray crystallography

Table S1. Selected Bond Lengths (A) and Angles (°) for 1.

Nd(1)-0(2)
Nd(1)-0(27)
Nd(1)-0(12)
Nd(1)-0(10)
Nd(1)-0(8)
Nd(1)-0(31)
Nd(1)-0(26)
Nd(1)-0(9)
Nd(1)-0(7)
Nd(1)-0(1)
Nd(1)-N(3)
Nd(2)-0(21)#1
Nd(2)-0(14)
Nd(2)-0(9)
Nd(2)-0(16)
Nd(2)-0(20)
Nd(2)-0(11)
Nd(2)-O(19)#1
Nd(2)-0(30)
Nd(2)-0(26)
Nd(3)-0(18)
Nd(3)-0(7)
Nd(3)-0(21)#1
Nd(3)-0(19)
Nd(3)-0(21)
Nd(3)-0(28)
Nd(3)-0(11)
Nd(3)-0(26)#1
Nd(3)-0(23)
Nd(3)-N(3)#1
Nd(4)-0(17)
Nd(4)-0(32)
Nd(4)-0(25)
Nd(4)-0(5)
Nd(4)-0(35)
Nd(4)-0(28)
Nd(4)-0(23)
Nd(4)-0(29)
Nd(4)-0(6)
Nd(4)-N(4)
Zn(1)-0(5)
Zn(1)-0Q2)#1
Zn(1)-N(2)
Zn(1)-N(1)#1
Zn(1)-027)#1
Zn(1)-0(32)
Zn(2)-0(34)
Zn(2)-0(24)

2.485(4)
2.493(4)
2.498(5)
2.500(4)
2.540(4)
2.547(5)
2.608(4)
2.624(4)
2.627(4)
2.653(4)
2.916(6)
2.395(4)
2.408(5)
2.414(4)
2.442(5)
2.493(4)
2.507(4)
2.608(4)
2.664(4)
2.666(4)
2.408(4)
2.440(4)
2.451(4)
2.486(4)
2.496(4)
2.502(4)
2.543(4)
2.545(4)
2.585(4)
2.970(6)
2.413(5)
2.429(4)
2.432(5)
2.472(4)
2.489(5)
2.502(4)
2.529(4)
2.561(4)
2.615(4)
2.959(6)
2.064(4)
2.075(4)
2.082(5)
2.099(5)
2.130(4)
2.286(4)
1.906(5)
1.937(5)
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Zn(2)-0(22)
Zn(2)-0(29)
Zn(2)-0(33)
Zn(3)-0(34)
Zn(3)-0(13)
Zn(3)-0(15)
Zn(3)-0(30)
0(2)-Nd(1)-0(27)
0(2)-Nd(1)-O(12)
0(27)-Nd(1)-0(12)
0(2)-Nd(1)-O(10)
0(27)-Nd(1)-0(10)
0(12)-Nd(1)-O(10)
0(2)-Nd(1)-O(8)
0(27)-Nd(1)-0(8)
0(12)-Nd(1)-O(8)
0(10)-Nd(1)-O(8)
0(2)-Nd(1)-0(31)
0(27)-Nd(1)-O(31)
0(12)-Nd(1)-0(31)
0(10)-Nd(1)-0(31)
0(8)-Nd(1)-O(31)
0(2)-Nd(1)-0(26)
0(27)-Nd(1)-0(26)
0(12)-Nd(1)-0(26)
0(10)-Nd(1)-0(26)
0(8)-Nd(1)-0(26)
0(31)-Nd(1)-0(26)
0(2)-Nd(1)-0(9)
0(27)-Nd(1)-0(9)
0(12)-Nd(1)-0(9)
0(10)-Nd(1)-O(9)
0(8)-Nd(1)-0(9)
0(31)-Nd(1)-0(9)
0(26)-Nd(1)-0(9)
0(2)-Nd(1)-0(7)
0(27)-Nd(1)-0(7)
0(12)-Nd(1)-0(7)
0(10)-Nd(1)-O(7)
0(8)-Nd(1)-0(7)
0(31)-Nd(1)-0(7)
0(26)-Nd(1)-O(7)
0(9)-Nd(1)-0(7)
0(2)-Nd(1)-0(1)
0(27)-Nd(1)-O(1)
0(12)-Nd(1)-0(1)
0(10)-Nd(1)-O(1)
O(8)-Nd(1)-0(1)

1.982(6)
2.098(4)
2.444(9)
1.934(5)
1.951(5)
1.964(5)
2.005(4)
63.52(13)
138.09(14)
140.83(14)
76.71(15)
77.43(14)
78.62(15)
92.09(14)
142.16(15)
76.69(16)
127.14(15)
72.08(14)
72.40(13)
137.61(14)
143.70(15)
72.66(15)
111.29(13)
51.33(12)
107.68(13)
105.58(13)
126.24(13)
70.19(14)
115.47(13)
70.80(13)
70.04(14)
50.05(13)
146.46(15)
132.04(14)
63.01(13)
130.70(13)
124.73(12)
70.73(14)
148.95(15)
50.21(13)
67.24(13)
79.83(11)
112.21(12)
59.97(14)
118.02(13)
79.36(14)
67.09(14)
62.86(13)



0(31)-Nd(1)-O(1)
0(26)-Nd(1)-0(1)
0(9)-Nd(1)-0(1)
0(7)-Nd(1)-0(1)
0(2)-Nd(1)-N(3)
0(27)-Nd(1)-N(3)
0(12)-Nd(1)-N(3)
0(10)-Nd(1)-N(3)
0(8)-Nd(1)-N(3)
0(31)-Nd(1)-N(3)
0(26)-Nd(1)-N(3)
0(9)-Nd(1)-N(3)
0(7)-Nd(1)-N(3)
O(1)-Nd(1)-N(3)
O21)#1-Nd(2)-0(14)
0(21)#1-Nd(2)-0(9)
0(14)-Nd(2)-0(9)
O(21)#1-Nd(2)-0(16)
0(14)-Nd(2)-O(16)
0(9)-Nd(2)-O(16)
O(21)#1-Nd(2)-0(20)
0(14)-Nd(2)-O(20)
0(9)-Nd(2)-0(20)
0(16)-Nd(2)-0(20)
OQ21)#1-Nd(2)-0(11)
0(14)-Nd(2)-O(11)
0(9)-Nd(2)-O(11)
0(16)-Nd(2)-0(11)
0(20)-Nd(2)-O(11)

O(21)#1-Nd(2)-O(19)#1

0(14)-Nd(2)-O(19)#1
0(9)-Nd(2)-O(19)#1
0(16)-Nd(2)-O(19)#1
0(20)-Nd(2)-O(19)#1
O(11)-Nd(2)-O(19)#1
O(21)#1-Nd(2)-0(30)
0(14)-Nd(2)-0(30)
0(9)-Nd(2)-O(30)
0(16)-Nd(2)-0(30)
0(20)-Nd(2)-0(30)
0(11)-Nd(2)-0(30)
O(19)#1-Nd(2)-0(30)
O(21)#1-Nd(2)-0(26)
0(14)-Nd(2)-0(26)
0(9)-Nd(2)-0(26)
0(16)-Nd(2)-0(26)
0(20)-Nd(2)-0(26)
O(11)-Nd(2)-O(26)
O(19)#1-Nd(2)-0(26)
0(30)-Nd(2)-0(26)
O(18)-Nd(3)-0(7)
0(18)-Nd(3)-0(21)#1

110.52(15)
169.12(12)
113.44(13)
110.67(13)
84.98(14)
25.85(14)
131.13(15)
96.10(15)
134.76(15)
63.49(15)
26.65(14)
69.96(14)
100.23(14)
143.26(15)
148.86(15)
122.73(13)
75.45(16)
92.88(16)
76.61(18)
143.66(16)
119.97(13)
86.93(16)
77.55(14)
78.22(16)
71.12(12)
99.00(16)
66.18(13)
141.61(15)
140.11(14)
69.88(12)
130.90(15)
111.32(14)
71.72(16)
50.79(13)
128.92(13)
76.51(12)
72.36(15)
122.23(14)
69.21(15)
144.47(14)
73.12(13)
126.10(13)
65.77(12)
140.04(14)
64.89(13)
135.68(15)
80.22(13)
70.00(13)
64.62(12)
133.67(11)
76.97(15)
143.24(14)
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0(7)-Nd(3)-0(21)#1
0(18)-Nd(3)-0(19)
0(7)-Nd(3)-0(19)
O(21)#1-Nd(3)-0(19)
0(18)-Nd(3)-0(21)
0(7)-Nd(3)-0(21)
O(21)#1-Nd(3)-0(21)
0(19)-Nd(3)-0(21)
0(18)-Nd(3)-0(28)
0(7)-Nd(3)-0(28)
O(21)#1-Nd(3)-0(28)
0(19)-Nd(3)-0(28)
0(21)-Nd(3)-0(28)
0(18)-Nd(3)-0(11)
0(7)-Nd(3)-O(11)
O(21)#1-Nd(3)-0(11)
0(19)-Nd(3)-0(11)
0(21)-Nd(3)-0(11)
0(28)-Nd(3)-O(11)
0(18)-Nd(3)-0(26)#1
0(7)-Nd(3)-0(26)#1

02 1)#1-Nd(3)-0(26)#1

0(19)-Nd(3)-0(26)#1
0(21)-Nd(3)-0(26)#1
0(28)-Nd(3)-0(26)#1
O(11)-Nd(3)-0(26)#1
0(18)-Nd(3)-0(23)
0(7)-Nd(3)-0(23)
O(21)#1-Nd(3)-0(23)
0(19)-Nd(3)-0(23)
0(21)-Nd(3)-0(23)
0(28)-Nd(3)-0(23)
O(11)-Nd(3)-0(23)
0(26)#1-Nd(3)-0(23)
0(18)-Nd(3)-N(3)#1
O(7)-Nd(3)-N(3)#1
OQ21)#1-Nd(3)-N(3)#1
0(19)-Nd(3)-N(3)#1
0(21)-Nd(3)-N(3)#1
0(28)-Nd(3)-N(3)#1
O(11)-Nd(3)-N(3)#1
0(26)#1-Nd(3)-N(3)#1
0(23)-Nd(3)-N(3)#1
0(17)-Nd(4)-0(32)
0(17)-Nd(4)-0(25)
0(32)-Nd(4)-0(25)
O(17)-Nd(4)-0(5)
0(32)-Nd(4)-0(5)
0(25)-Nd(4)-0(5)
0(17)-Nd(4)-0(35)
0(32)-Nd(4)-0(35)
0(25)-Nd(4)-0(35)

110.65(13)
82.23(15)
80.80(13)
133.89(13)
139.97(14)
70.41(13)
72.20(14)
70.38(13)
75.43(15)
132.29(14)
73.66(13)
131.88(13)
144.50(13)
82.05(14)
66.74(13)
69.64(12)
146.35(13)
104.89(13)
71.47(13)
129.38(14)
132.93(13)
72.74(12)
68.17(13)
66.32(12)
94.45(13)
142.18(12)
80.85(14)
145.75(13)
102.77(12)
70.54(13)
114.73(12)
64.23(13)
135.20(13)
51.36(12)
105.36(16)
147.90(14)
86.89(13)
68.09(14)
91.17(14)
77.52(14)
145.16(14)
25.99(14)
25.41(14)
145.46(17)
132.37(17)
81.19(16)
103.74(16)
67.31(13)
83.56(15)
71.54(19)
138.26(16)
72.04(18)



0(5)-Nd(4)-0(35)

0(17)-Nd(4)-0(28)
0(32)-Nd(4)-0(28)
0(25)-Nd(4)-0(28)
0(5)-Nd(4)-0(28)

0(35)-Nd(4)-0(28)
0(17)-Nd(4)-0(23)
0(32)-Nd(4)-0(23)
0(25)-Nd(4)-0(23)
0(5)-Nd(4)-0(23)

0(35)-Nd(4)-0(23)
0(28)-Nd(4)-0(23)
0(17)-Nd(4)-0(29)
0(32)-Nd(4)-0(29)
0(25)-Nd(4)-0(29)
0(5)-Nd(4)-0(29)

0(35)-Nd(4)-0(29)
0(28)-Nd(4)-0(29)

137.29(16)
80.81(15)
83.74(14)
126.43(15)
135.10(14)
87.04(16)
70.17(15)
75.31(14)
152.59(15)
74.55(13)
135.36(17)
65.05(13)
118.30(16)
72.31(14)
75.67(15)
136.81(14)
70.42(15)
50.78(13)

0(23)-Nd(4)-0(29)
0(17)-Nd(4)-0(6)
0(32)-Nd(4)-0(6)
0(25)-Nd(4)-0(6)
0(5)-Nd(4)-0(6)
0(35)-Nd(4)-O(6)
0(28)-Nd(4)-0(6)
0(23)-Nd(4)-0(6)
0(29)-Nd(4)-O(6)
O(17)-Nd(4)-N(4)
0(32)-Nd(4)-N(4)
0(25)-Nd(4)-N(4)
0(5)-Nd(4)-N(4)
0(35)-Nd(4)-N(4)
0(28)-Nd(4)-N(4)
0(23)-Nd(4)-N(4)
0(29)-Nd(4)-N(4)
0(6)-Nd(4)-N(4)

109.56(13)
67.46(16)
125.44(14)
76.23(17)
61.33(14)
78.80(16)
147.92(15)
106.27(14)
143.31(14)
99.70(17)
76.68(14)
101.74(17)
142.40(15)
78.13(16)
24.71(15)
86.51(14)
26.07(15)
156.25(15)
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