A Novel Ultra Small Pd NPs on SOS Spheres: a New Catalyst for Domino Intramolecular Heck and Intermolecular Sonogashira Couplings

Bhairi Lakshminarayana, T. Vinod kumar, G. Satyanarayana* and Ch. Subrahmanyam*
*Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India. Ph. No: +91(40) 23016054, E-mail: csubbu@iith.ac.in

Table of Contents	Page No.
Experimental/Catalytic Procedure	S02-S02
Instruments used for characterization	S02-S03
¹ H-/ ¹³ C-NMR data & Spectra's of all isolated products	S04-S38

Experimental Procedure for the Synthesis of Dihydrobenzofurans 3:

In an oven-dried Schlenk tube, 1-iodo-2-((2-methylallyl)oxy)benzene **1a** (0.25 mmol), Alkyne **2** (0.5 mmol), K₂CO₃ base (0.5 mmol), Pd/SOS spheres catalyst (0.3 mol% of Pd), solvent (DMF) (1.0 mL) were added. The resulting reaction mixture was stirred at 100 °C temperature for 1-24 h. The progress of the reaction was monitored by TLC. After completion of reaction, the reaction mixture was diluted with ethyl acetate (5 mL) and neutral NH₄Cl solution (5 mL) was added fallowed by extraction with ethyl acetate (2×4 mL). The organic layers were dried with Na₂SO₄ and concentrated in reduced vacuum. Purification of the residue by silica gel column chromatography using distilled petroleum ether (Hexane) as the eluent furnished the dihydrobenzofurans **3**.

Experimental Procedure for the Synthesis of Oxindoles 5:

In an oven-dried Schlenk tube, *N*-(2-iodophenyl)-*N*-alkylmethacrylamide **4** (0.25 mmol), Alkyne **2** (0.5 mmol), K₂CO₃ base (0.5 mmol), Pd/SOS spheres catalyst (0.3 mol% of Pd), solvent (DMF) (1.0 mL) were added. The resulting reaction mixture was stirred at 100 °C temperature for 12-24 h. The progress of the reaction was monitored by TLC. After completion of reaction, the reaction mixture was diluted with ethyl acetate (5 mL) and neutral NH₄Cl solution (5 mL) was added fallowed by extraction with ethyl acetate (2×4 mL). The organic layers were dried with Na₂SO₄ and concentrated in reduced vacuum. Purification of the residue by silica gel column chromatography using distilled petroleum ether/ethyl acetate as the eluent furnished the dihydrobenzofurans **5**.

Instruments used for characterization

X-ray powder diffraction was performed on a PANalytical, X'pertPRO instrument with Cu K α radiation of wavelength 1.5406 Å. The augmented voltage and current used for this instrument were 40 kV and 30 mA respectively. The step size used for the scan is 0.017° per step in the 20 angle range of 10°-100°. HRTEM was performed by depositing samples on a carbon covered Cu grid on a 200 kV FEI model TECNAIG2 S-Twin TEM instrument connected with a moderate output CCD camera. The catalysts were portrayed by X-ray photoelectron spectra (XPS) with omicron gear utilizing Al K α radiation (1486.6 eV). The instrument was precalibrated with a reference of C (1s) peak at 284.5 eV. IR spectra were recorded on a Bruker Tensor 37 (FTIR) spectrophotometer. Every beginning material were synthesized and gotten from suppliers and used as received. Solvents were sanitized by standard methodology. Experiments were carried out under closed environment. ¹H NMR spectra were recorded at 400 MHz utilizing Bruker AVANCE instrument at 278 K. Chemical shift (δ) in ppm downfield from tetramethylsilane with the dissolvable as the interior reference (CDCl₃: δ 7.26 ppm). Data is reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = expansive, m = multiplet), coupling constants (Hz), and integration. ¹³CNMR spectra were recorded on either a Bruker AVANCE 100 MHz with complete proton decoupling.

The assignment of signals was confirmed by ¹H, ¹³C and DEPT spectra. All small-scale dry reactions were carried out using the standard technique. Reactions were monitored by TLC on silica gel using a combination of hexane and ethyl acetate as eluents. Solvents were distilled prior to use; petroleum ether with a boiling range of 40 to 60 °C was used. Acme's silica gel (60–120 mesh) was used for column chromatography.

3aa (99%, 1h)

¹H NMR (400 MHz, CHLOROFORM-d) δ = 7.41 - 7.36 (m, 2 H), 7.32 - 7.26 (m, 3 H), 7.25 - 7.22 (m, 1 H), 7.16 (dt, *J* = 1.5, 7.8 Hz, 1 H), 6.93 - 6.88 (m, 1 H), 6.82 (d, *J* = 8.3 Hz, 1 H), 4.55 (d, *J* = 8.8 Hz, 1 H), 4.24 (d, *J* = 8.8 Hz, 1 H), 2.68 (s, 2 H), 1.54 (s, 3 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 159.4, 134.0, 131.6, 128.5, 128.2, 127.8, 123.5, 123.0, 120.6, 109.8, 86.7, 82.5, 82.3, 45.3, 31.5, 24.2

¹H NMR (400MHz ,CHLOROFORM-d) $\delta = 7.42$ (s, 1 H), 7.31 (d, J = 7.3 Hz, 1 H), 7.25 (s, 1 H), 7.13 (d, J = 7.3 Hz, 1 H), 7.16 (d, J = 7.8 Hz, 1 H), 7.11 - 7.05 (m, 1 H), 6.82 (t, J = 7.3 Hz, 1 H), 6.74 (d, J = 7.8 Hz, 1 H), 4.45 (d, J = 8.8 Hz, 1 H), 4.14 (d, J = 8.8 Hz, 1 H), 2.99 (s, 1 H), 2.59 (s, 2 H), 1.44 (s, 3 H); ¹³C NMR (100 MHz, CHLOROFORM-d) $\delta = 159.4$, 135.1, 133.9, 131.9, 131.4, 128.6, 128.3, 123.8, 122.9, 122.3, 120.6, 109.8, 87.5, 82.8, 82.2, 81.5, 77.7, 45.2, 31.5, 24.2

3ac

¹H NMR (400 MHz, CHLOROFORM-d) δ = 7.20 - 7.02 (m, 5 H), 6.99 (d, *J* = 7.3 Hz, 1 H), 6.80 (dt, *J* = 1.7, 7.2 Hz, 1 H), 6.72 (d, *J* = 7.8 Hz, 1 H), 4.44 (td, *J* = 1.7, 8.8 Hz, 1 H), 4.21 - 4.00 (m, 1 H), 2.57 (s, 2 H), 2.21 (s, 3 H), 1.43 (s, 3 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 159.4, 137.8, 134.0, 132.1, 128.7, 128.6, 128.5, 128.1, 123.2, 122.9, 120.5, 109.8, 86.2, 82.6, 82.2, 45.2, 31.5, 24.2, 21.1

3ad

¹H NMR (400MHz, CHLOROFORM-d) δ = 7.23 - 7.12 (m, 3 H), 7.12 - 6.98 (m, 3 H), 6.81 (t, *J* = 7.1 Hz, 1 H), 6.74 (d, *J* = 7.8 Hz, 1 H), 4.46 (d, *J* = 8.8 Hz, 1 H), 4.15 (d, *J* = 8.8 Hz, 1 H), 2.59 (s, 2 H), 2.25 (s, 3 H), 1.45 (s, 3 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 159.4, 137.9, 134.1, 131.4, 129.0, 128.5, 123.0, 120.5, 120.4, 109.8, 85.8, 82.5, 82.3, 45.3, 31.5, 24.2, 21.4

¹H NMR (400 MHz, CHLOROFORM-d) δ = 7.32 - 7.26 (m, 2 H), 7.19 (dd, *J* = 1.5, 7.3 Hz, 1 H), 7.15 - 7.09 (m, 1 H), 6.86 (dt, *J* = 1.0, 7.6 Hz, 1 H), 6.81 - 6.77 (m, 3 H), 4.51 (d, *J* = 8.8 Hz, 1 H), 4.19 (d, *J* = 8.8 Hz, 1 H), 3.75 (s, 3 H), 2.63 (s, 2 H), 1.49 (s, 3 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 159.4, 159.2, 134.1, 134.0, 132.9, 128.5, 122.9, 120.5, 115.6, 114.1, 113.8, 109.7, 85.0, 82.3, 82.2, 55.2, 45.3, 31.5, 24.2

3af

¹H NMR (400 MHz, CHLOROFORM-d) δ = 7.35 (dd, *J* = 1.0, 2.9 Hz, 1 H), 7.25 - 7.19 (m, 2 H), 7.15 (dt, *J* = 1.5, 7.8 Hz, 1 H), 7.05 (dd, *J* = 1.2, 5.1 Hz, 1 H), 6.92 - 6.87 (m, 1 H), 6.81 (d, *J* = 8.3 Hz, 1 H), 4.53 (d, *J* = 8.8 Hz, 1 H), 4.22 (d, *J* = 9.3 Hz, 1 H), 2.65 (s, 2 H), 1.52 (s, 3 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 159.4, 134.0, 129.9, 128.5, 128.0, 125.1, 122.9, 122.4, 120.5, 109.8, 86.2, 82.2, 77.5, 45.2, 31.5, 24.2

3ag

¹H NMR (400 MHz, CHLOROFORM-d) δ = 7.25 - 7.11 (m, 2 H), 6.90 (dt, *J* = 1.0, 7.3 Hz, 1 H), 6.82 (d, *J* = 7.8 Hz, 1 H), 5.24 (s, 1 H), 5.21 - 5.15 (m, 1 H), 4.50 (d, *J* = 8.8 Hz, 1 H), 4.21 (d, *J* = 8.8 Hz, 1 H), 2.59 (s, 2 H), 1.88 (s, 3 H), 1.50 (s, 3 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 159.4, 134.0, 128.5, 126.9, 122.9, 120.9, 120.5, 109.8, 85.7, 83.7, 82.2, 45.2, 31.4, 24.1, 23.6

3ah

¹H NMR (400 MHz, CHLOROFORM-d) δ = 7.08 - 7.01 (m, 2 H), 6.78 (dt, *J* = 1.0, 7.3 Hz, 1 H), 6.73 - 6.66 (m, 1 H), 4.36 (d, *J* = 8.8 Hz, 1 H), 4.07 (d, *J* = 8.8 Hz, 1 H), 2.30 (d, *J* = 2.0 Hz, 2 H), 1.34 (s, 3 H), 1.11 (tt, *J* = 3.2, 5.1 Hz, 1 H), 0.67 - 0.58 (m, 2 H), 0.54 - 0.45 (m, 2 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 159.4, 134.2, 128.3, 122.8, 120.4, 109.6, 85.4, 82.2, 71.9, 45.1, 30.9, 24.2, 8.0, -0.5

Me

3ai

¹H NMR (400 MHz, CHLOROFORM-d) δ = 7.21 - 7.12 (m, 2 H), 6.93 - 6.86 (m, 1 H), 6.81 (d, J = 7.8 Hz, 1 H), 4.51 (d, J = 8.8 Hz, 1 H), 4.20 (d, J = 8.8 Hz, 1 H), 2.45 (s, 2 H), 2.18 (t, J = 2.4, 6.8 Hz, 2 H), 1.49 - 1.34 (m, 7 H), 0.93 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 159.4, 134.3, 128.3, 122.8, 120.4, 109.7, 82.3, 82.2, 76.5, 45.1, 31.0, 30.9, 24.3, 21.8, 18.3, 13.6

3aj

¹H NMR (400 MHz, CHLOROFORM-d) δ = 7.21 - 7.11 (m, 2 H), 6.89 (dt, *J* = 1.0, 7.3 Hz, 1 H), 6.81 (d, *J* = 7.8 Hz, 1 H), 4.50 (d, *J* = 8.8 Hz, 1 H), 4.19 (d, *J* = 8.8 Hz, 1 H), 2.45 (t, *J* = 2.0 Hz, 2 H), 2.21 - 2.12 (m, 2 H), 1.47 (s, 3 H), 1.44 - 1.22 (m, 10 H), 0.94 - 0.88 (m, 3 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 159.4, 134.3, 128.3, 122.8, 120.4, 109.7, 82.4, 82.2, 76.5, 45.1, 31.8, 30.9, 29.0, 28.9, 28.8, 28.8, 24.3, 22.6, 18.6, 14.1

3ak

¹H NMR (400 MHz, CHLOROFORM-d) δ = 7.21 - 7.11 (m, 2 H), 6.92 - 6.85 (m, 1 H), 6.81 (d, J = 7.8 Hz, 1 H), 4.50 (d, J = 8.8 Hz, 1 H), 4.19 (d, J = 8.8 Hz, 1 H), 2.45 (t, J = 2.2 Hz, 2 H), 2.17 (tt, J = 2.4, 7.1 Hz, 2 H), 1.47 (s, 4 H), 1.40 - 1.35 (m, 2 H), 1.34 - 1.25 (m, 10 H), 0.91 (t, 3 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 159.4, 134.3, 128.3, 122.8, 120.4, 109.7, 82.4, 82.2, 76.5, 45.1, 31.8, 30.9, 29.2, 29.1, 29.0, 28.8, 24.3, 22.6, 18.7, 14.1

3al

¹H NMR (400 MHz, CHLOROFORM-d) δ = 7.21 - 7.12 (m, 2 H), 6.89 (dt, *J* = 1.0, 7.3 Hz, 1 H), 6.81 (d, *J* = 7.8 Hz, 1 H), 4.51 (d, *J* = 8.8 Hz, 1 H), 4.20 (d, *J* = 8.8 Hz, 1 H), 2.45 (t, *J* = 2.2 Hz, 2 H), 2.22 - 2.12 (m, 2 H), 1.48 (s, 3 H), 1.35 - 1.17 (m, 16 H), 0.92 (t, 3 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 159.4, 134.3, 128.3, 122.8, 120.4, 109.7, 82.4, 82.2, 76.5, 45.1, 31.9, 30.9, 29.6, 29.5, 29.3, 29.1, 29.0, 28.8, 24.3, 22.7, 18.6, 14.1

3am

¹H NMR (400 MHz, CHLOROFORM-d) δ = 7.21 - 7.12 (m, 2 H), 6.89 (dt, *J* = 1.0, 7.3 Hz, 1 H), 6.81 (d, *J* = 7.8 Hz, 1 H), 4.51 (d, *J* = 8.8 Hz, 1 H), 4.20 (d, *J* = 8.8 Hz, 1 H), 2.49 - 2.41 (m, 2 H), 2.17 (tt, *J* = 2.3, 7.0 Hz, 2 H), 1.47 (s, 3 H), 1.33 - 1.26 (m, 20 H), 0.91 (t, *J* = 6.8 Hz, 3 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 159.4, 134.3, 128.3, 122.8, 120.4, 109.7, 82.4, 82.2, 76.5, 45.1, 31.9, 30.9, 29.7, 29.6, 29.6, 29.3, 29.1, 29.0, 28.8, 24.3, 22.7, 18.6, 14.1

5aa

¹H NMR (400 MHz, CHLOROFORM-d) δ = 7.51 - 7.44 (m, 1 H), 7.37 - 7.20 (m, 6 H), 7.12 - 7.06 (m, 1 H), 6.87 (d, *J* = 7.8 Hz, 1 H), 3.23 (s, 3 H), 2.91 (d, *J* = 16.6 Hz, 1 H), 2.68 (d, *J* = 16.6 Hz, 1 H), 1.52 (s, 3 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 179.5, 143.1, 133.3, 131.5, 128.2, 128.1, 127.8, 123.4, 123.3, 122.6, 107.9, 85.4, 82.8, 47.2, 28.9, 26.3, 21.7

5ba

¹H NMR (400 MHz, CHLOROFORM-d) δ = 7.47 (d, *J* = 6.8 Hz, 1 H), 7.39 - 7.14 (m, 6 H), 7.12 - 7.04 (m, 1 H), 6.89 (d, *J* = 7.8 Hz, 1 H), 3.84 (qd, *J* = 7.2, 14.2 Hz, 1 H), 3.72 (qd, *J* = 7.2, 14.2 Hz, 1 H), 2.91 (d, *J* = 16.6 Hz, 1 H), 2.73 (d, *J* = 16.6 Hz, 1 H), 1.51 (s, 3 H), 1.23 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 179.1, 142.2, 133.5, 131.5, 128.1, 127.8, 123.4, 123.3, 122.3, 108.1, 85.4, 82.7, 47.1, 34.6, 28.9, 21.8, 12.7

¹H NMR (400 MHz, CHLOROFORM-d) δ = 7.41 (dd, *J* = 1.0, 7.3 Hz, 1 H), 7.33 - 7.24 (m, 1 H), 7.12 - 7.03 (m, 1 H), 6.85 (d, *J* = 7.3 Hz, 1 H), 3.22 (s, 3 H), 2.71 - 2.59 (m, 1 H), 2.52 - 2.40 (m, 1 H), 2.12 - 2.03 (m, 2 H), 1.44 (s, 3 H), 1.30 - 1.20 (m, 8 H), 0.90 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 179.8, 143.1, 133.5, 127.9, 123.1, 122.4, 107.8, 82.7, 75.2, 47.2, 31.7, 28.8, 28.8, 28.6, 28.2, 26.1, 22.6, 21.7, 18.6, 14.0

5bn

¹H NMR (400 MHz, CHLOROFORM-d) δ = 7.39 (dd, *J* = 1.0, 7.3 Hz, 1 H), 7.31 - 7.22 (m, 1 H), 7.09 - 7.01 (m, 1 H), 6.86 (d, *J* = 7.8 Hz, 1 H), 3.88 - 3.66 (m, 2 H), 2.64 (td, *J* = 2.4, 16.6 Hz, 1 H), 2.48 (td, *J* = 2.4, 16.3 Hz, 1 H), 2.04 (tt, *J* = 2.4, 6.8 Hz, 2 H), 1.41 (s, 3 H), 1.30 - 1.19 (m, 12 H), 0.88 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 179.3, 142.2, 133.7, 127.8, 123.3, 122.1, 107.9, 82.5, 75.2, 47.1, 34.5, 31.7, 28.8, 28.6, 28.3, 22.6, 21.8, 18.6, 14.0, 12.7

5ak

¹H NMR (400 MHz, CHLOROFORM-d) δ = 7.40 (d, *J* = 7.3 Hz, 1 H), 7.28 (dt, *J* = 1.2, 7.7 Hz, 1 H), 7.10 - 7.03 (m, 1 H), 6.84 (d, *J* = 7.8 Hz, 1 H), 3.22 (s, 3 H), 2.65 (td, *J* = 2.4, 16.1 Hz, 1 H), 2.46 (td, *J* = 2.4, 16.1 Hz, 1 H), 2.11 - 2.02 (m, 2 H), 1.43 (s, 3 H), 1.34 - 1.05 (m, 12 H), 0.89 (t, *J* = 6.8 Hz, 3 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 179.7, 143.1, 133.5, 127.9, 123.1, 122.4, 107.8, 82.7, 75.2, 47.2, 31.8, 29.1, 29.1, 28.8, 28.7, 28.2, 26.1, 22.6, 21.7, 18.6, 14.0

¹H NMR (400 MHz, CHLOROFORM-d) δ = 7.43 - 7.35 (m, 1 H), 7.31 - 7.24 (m, 1 H), 7.09 - 7.02 (m, 1 H), 6.87 (d, *J* = 7.8 Hz, 1 H), 3.87 - 3.67 (m, 2 H), 2.65 (td, *J* = 2.4, 16.1 Hz, 1 H), 2.48 (td, *J* = 2.4, 16.3 Hz, 1 H), 2.05 (tt, *J* = 2.3, 7.0 Hz, 2 H), 1.42 (s, 3 H), 1.31 - 1.16 (m, 15 H), 0.89 (t, *J* = 6.8 Hz, 3 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 179.3, 142.2, 133.7, 127.8, 123.3, 122.1, 107.9, 82.5, 75.2, 47.1, 34.5, 31.8, 29.1, 29.1, 28.8, 28.7, 28.3, 22.6, 21.8, 18.6, 14.1, 12.7

5al

¹H NMR (400 MHz, CHLOROFORM-d) δ = 7.41 (dd, *J* = 1.0, 7.3 Hz, 1 H), 7.32 - 7.24 (m, 1 H), 7.11 - 7.03 (m, 1 H), 6.84 (d, *J* = 7.8 Hz, 1 H), 3.22 (s, 3 H), 2.65 (td, *J* = 2.4, 16.1 Hz, 1 H), 2.46 (td, *J* = 2.4, 16.1 Hz, 1 H), 2.11 - 2.03 (m, 2 H), 1.43 (s, 3 H), 1.32 - 1.18 (m, 16 H), 0.92 - 0.86 (m, 3 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 179.7, 143.1, 133.5, 127.9, 123.1, 122.3, 107.8, 82.7, 75.2, 47.2, 31.9, 29.6, 29.5, 29.3, 29.1, 28.8, 28.7, 28.2, 26.1, 22.6, 21.7, 18.6, 14.1

¹H NMR (400 MHz, CHLOROFORM-d) δ = 7.39 (dd, *J* = 1.0, 7.3 Hz, 1 H), 7.31 - 7.23 (m, 1 H), 7.09 - 7.01 (m, 1 H), 6.86 (d, *J* = 7.8 Hz, 1 H), 3.88 - 3.67 (m, 2 H), 2.64 (td, *J* = 2.4, 16.1 Hz, 1 H), 2.48 (td, *J* = 2.4, 16.3 Hz, 1 H), 2.04 (tt, *J* = 2.4, 6.8 Hz, 2 H), 1.42 (s, 3 H), 1.30 - 1.18 (m, 20 H), 0.92 - 0.85 (m, 3 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 179.3, 142.2,

133.7, 127.8, 123.3, 122.1, 107.9, 82.5, 75.2, 47.1, 34.5, 31.9, 29.6, 29.5, 29.3, 29.1, 28.8, 28.7, 28.3, 22.6, 21.8, 18.6, 14.1, 12.7

¹H NMR (400 MHz, CHLOROFORM-d) δ = 7.41 (d, *J* = 7.3 Hz, 1 H), 7.28 (dt, *J* = 1.2, 7.7 Hz, 1 H), 7.11 - 7.04 (m, 1 H), 6.84 (d, *J* = 7.8 Hz, 1 H), 3.22 (s, 3 H), 2.65 (td, *J* = 2.4, 16.1 Hz, 1 H), 2.46 (td, *J* = 2.4, 16.1 Hz, 1 H), 2.11 - 2.03 (m, 2 H), 1.43 (s, 3 H), 1.30 - 1.20 (m, 21 H), 0.91 - 0.86 (m, 3 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 179.7, 143.1, 133.5, 127.9, 123.1, 122.4, 107.8, 82.7, 75.2, 47.2, 31.9, 29.6, 29.6, 29.6, 29.5, 29.3, 29.1, 28.8, 28.7, 28.2, 26.1, 22.7, 21.7, 18.6, 14.1

5bh

¹H NMR (400 MHz, CHLOROFORM-d) δ = 7.37 (d, *J* = 7.3 Hz, 1 H), 7.28 (dt, *J* = 1.2, 7.7 Hz, 1 H), 7.10 - 7.02 (m, 1 H), 6.87 (d, *J* = 7.8 Hz, 1 H), 3.83 (qd, *J* = 7.2, 14.2 Hz, 1 H), 3.71 (qd, *J* = 7.2, 14.2 Hz, 1 H), 2.61 (dd, *J* = 2.0, 16.6 Hz, 1 H), 2.44 (dd, *J* = 2.0, 16.1 Hz, 1 H), 1.40 (s, 3 H), 1.27 (t, *J* = 7.3 Hz, 4 H), 1.14 - 1.04 (m, 1 H), 0.68 - 0.59 (m, 2 H), 0.50 - 0.40 (m, 2 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 179.3, 142.2, 133.7, 127.8, 123.3, 122.1, 107.9, 85.6, 70.5, 47.1, 34.6, 28.3, 21.6, 12.7, 7.9, 7.8, -0.6

¹H NMR (400 MHz, CHLOROFORM-d) δ = 7.53 - 7.44 (m, 1 H), 7.31 (dt, *J* = 1.2, 7.7 Hz, 1 H), 7.18 - 7.05 (m, 5 H), 6.90 (d, *J* = 7.8 Hz, 1 H), 3.85 (qd, *J* = 7.2, 14.2 Hz, 1 H), 3.74 (qd, *J* = 7.2, 14.2 Hz, 1 H), 2.92 (d, *J* = 16.1 Hz, 1 H), 2.72 (d, *J* = 16.6 Hz, 1 H), 2.30 (s, 3 H), 1.52 (s, 3 H), 1.25 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 179.1, 142.1, 137.8, 133.5, 132.1, 128.7, 128.5, 128.0, 123.4, 123.1, 122.3, 108.1, 85.0, 82.8, 47.1, 34.6, 28.9, 21.7, 21.1, 12.7

5bo

¹H NMR (400 MHz, CHLOROFORM-d) δ = 7.31 - 7.22 (m, 4 H), 7.01 - 6.93 (m, 1 H), 6.89 - 6.73 (m, 3 H), 4.63 - 4.51 (m, 2 H), 3.81 - 3.61 (m, 2 H), 2.72 (td, *J* = 2.0, 16.5 Hz, 1 H), 2.52 (td, *J* = 2.2, 16.6 Hz, 1 H), 1.39 (s, 3 H), 1.30 (s, 9 H), 1.23 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CHLOROFORM-d) δ = 178.9, 155.4, 143.8, 142.0, 133.2, 128.0, 126.2, 123.4, 122.3, 114.3, 108.1, 83.1, 77.5, 56.0, 46.7, 34.6, 34.0, 31.5, 28.2, 21.7, 12.6

Figure S1A: ¹H NMR (400 MHz) spectrum of 3aa in CDCl₃

Figure S1B: ¹³C NMR (400 MHz) spectrum of **3aa** in CDCl₃

Figure S2A: ¹H NMR (400 MHz) spectrum of 3ab in CDCl₃

Figure S2B: ¹³C NMR (400 MHz) spectrum of 3ab in CDCl₃

Figure S3A: ¹H NMR (400 MHz) spectrum of 3ac in CDCl₃

Figure S3B: ¹³C NMR (400 MHz) spectrum of 3ac in CDCl₃

Figure S4A: ¹H NMR (400 MHz) spectrum of 3ad in CDCl₃

Figure S4B: ¹³C NMR (400 MHz) spectrum of 3ad in CDCl₃

Figure S5A: ¹H NMR (400 MHz) spectrum of 3ae in CDCl₃

Figure S5B: ¹³C NMR (400 MHz) spectrum of 3ae in CDCl₃

Figure S6A: ¹H NMR (400 MHz) spectrum of 3af in CDCl₃

Figure S6B: ¹³C NMR (400 MHz) spectrum of **3af** in CDCl₃

Figure S7A: ¹H NMR (400 MHz) spectrum of 3ag in CDCl₃

Figure S7B: ¹³C NMR (400 MHz) spectrum of 3ag in CDCl₃

Figure S8A: ¹H NMR (400 MHz) spectrum of 3ah in CDCl₃

Figure S8B: ¹³C NMR (400 MHz) spectrum of 3ah in CDCl₃

Figure S9A: ¹H NMR (400 MHz) spectrum of 3ai in CDCl₃

Figure S9B: ¹³C NMR (400 MHz) spectrum of 3ai in CDCl₃

Figure S10A: ¹H NMR (400 MHz) spectrum of 3aj in CDCl₃

Figure S10B: ¹³C NMR (400 MHz) spectrum of 3aj in CDCl₃

Figure S11B: ¹³C NMR (400 MHz) spectrum of **3ak** in CDCl₃

Figure S12A: ¹H NMR (400 MHz) spectrum of 3al in CDCl₃

Figure S12B: ¹³C NMR (400 MHz) spectrum of 3al in CDCl₃

Figure S13A: ¹H NMR (400 MHz) spectrum of 3am in CDCl₃

Figure S13B: ¹³C NMR (400 MHz) spectrum of 3am in CDCl₃

Figure S14A: ¹H NMR (400 MHz) spectrum of 5aa in CDCl₃

Figure S14B: ¹³C NMR (400 MHz) spectrum of 5aa in CDCl₃

Figure S15A: ¹H NMR (400 MHz) spectrum of 5ba in CDCl₃

Figure S15B: ¹³C NMR (400 MHz) spectrum of 5ba in CDCl₃

Figure S16A: ¹H NMR (400 MHz) spectrum of 5an in CDCl₃

Figure S16B: ¹³C NMR (400 MHz) spectrum of 5an in CDCl₃

Figure S17A: ¹H NMR (400 MHz) spectrum of 5bn in CDCl₃

Figure S17B: ¹³C NMR (400 MHz) spectrum of 5bn in CDCl₃

Figure S18A: ¹H NMR (400 MHz) spectrum of 5ak in CDCl₃

Figure S18B: ¹³C NMR (400 MHz) spectrum of 5ak in CDCl₃

Figure S19A: ¹H NMR (400 MHz) spectrum of 5bk in CDCl₃

Figure S19B: ¹³C NMR (400 MHz) spectrum of 5bk in CDCl₃

Figure S20A: ¹H NMR (400 MHz) spectrum of 5al in CDCl₃

Figure S20B: ¹³C NMR (400 MHz) spectrum of 5al in CDCl₃

Figure S21A: ¹H NMR (400 MHz) spectrum of 5bl in CDCl₃

Figure S21B: ¹³C NMR (400 MHz) spectrum of 5bl in CDCl₃

Figure S22A: ¹H NMR (400 MHz) spectrum of 5am in CDCl₃

Figure S22B: ¹³C NMR (400 MHz) spectrum of 5am in CDCl₃

Figure S23A: ¹H NMR (400 MHz) spectrum of 5bh in CDCl₃

Figure S23B: ¹³C NMR (400 MHz) spectrum of 5bh in CDCl₃

Figure S24A: ¹H NMR (400 MHz) spectrum of 5bc in CDCl₃

Figure S24B: ¹³C NMR (400 MHz) spectrum of 5bc in CDCl₃

Figure S25A: ¹H NMR (400 MHz) spectrum of 5bo in CDCl₃

Figure S25B: ¹³C NMR (400 MHz) spectrum of 5bo in CDCl₃