Supporting Information

Elucidating the Ionic Liquid Distribution in Monolithic SILP Hydroformylation Catalysts by Magnetic Resonance Imaging

Jakob Maximilian Marinkovic¹, Stefan Benders², Eduardo J. Garcia-Suarez^{1, γ, θ}, Alexander Weiß³, Carsten Gundlach⁴, Marco Haumann³, Markus Küppers², Bernhard Blümich², Rasmus Fehrmann¹, Anders Riisager^{1,*}

1 Technical University of Denmark, Centre for Catalysis and Sustainable Chemistry, Department of Chemistry, Kemitorvet, Building 207, 2800 Kgs. Lyngby, Denmark

2 RWTH Aachen University, Institut für Technische und Makromolekulare Chemie, Worringerweg 2, 52064 Aachen, Germany

3 Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik (CRT), Egerlandstr. 3, 91058 Erlangen, Germany

4 Technical University of Denmark, Department of Physics, Fysikvej, Building 309, 2800 Kgs. Lyngby, Denmark

 γ Current address: Tecnalia, Energy and Environment Division, Parque Tecnológico de Álava, Leonardo Da Vinci, 11, 01510 Miñano, Spain

 θ Current address: IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain

* corresponding author: ar@kemi.dtu.dk

Compositions of monolith impregnations

Figure	IL loading	Sebacate loading	
	wt.%	wt.%	
3c, 4b, 6c, 6d	2.17	2.20	
4a, 6a, 6b	2.74	-	
4c, 5a-d	5.80	-	
4d	3.73	3.77	
7a	3.16	3.20	
7b	3.23	3.28	
8	2.57	2.61	

Table S1: IL and sebacate contents of monolith impregnations.

Pore volume determination by liquid absorption

Entry	m (monolith)	m (monolith+H ₂ O)	Pore volume
	g	g	ml g⁻¹
1	106.06	124.06	0.170
2	105.27	123.47	0.173
3	105.86	123.57	0.168
4	106.38	124.14	0.167

Table S2: Pore volume determination by liquid absorption with water on pristine SiC monoliths.

Drying procedure after monolith wet-impregnation

Figure S1: Photograph of a monolith during drying procedure.

Density spin integrals of the MR images

Figure S2: Integrals of signals of MR images.

MRI of a sebacate-only impregnated monolith

Figure S3: MR image of a sebacate-only impregnated monolith.

Slice-selective MRI of an impregnated SiC monolith at equal slice distances

Figure S4: MR images of a SiC monolith with 3.73 wt.% IL and 3.77 wt.% stabilizer from top (a) to bottom (c).

Relative standard deviation

standard deviation,
$$S = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + (x_3 - \bar{x})^2 + \dots}{n-1}}$$

 $RSD = \frac{100S}{\bar{x}}$
(S1)

XPS survey spectra

Figure S5: XPS survey spectra of SiC monolith with 2.57 wt.% IL and 2.61 wt.% stabilizer.