Supplementary text

An effective utilization of MXene and its effect on electromagnetic interference shielding: flexible, free standing and thermally conductive composite from MXene-PAT-Poly(p-aminophenol)-polyaniline co-polymer.

Figure S2. The cross-section of the composite under the scanning electron microscope.

Figure S3. XPS O1s Overlapping curve of composites

Table S1. Elemental percentage of composites from XPS

Nos	Composites	C1s %	Ti2p %	Ols %	F1s %	N1s %	S2p %

1	MXPAT	65.51	0.49	32.4	1.6	-	-
2	MXPATPN	67.24	0.68	27.6	2.53	1.94	-
3	PXPATPA	62.75	0.57	32.07	1.79	2.83	-
4	MXPATPNPA	62.94	0.55	31.84	1.54	3.14	-
5	MXPATPPy	62.35	1.04	32.78	1.76	2.07	-
6	MXPATPTh	62.43	0.41	34.09	0.74	-	2.32
7	uMXPAT	65.27	0.68	31.18	2.88	-	-
8	dMXPAt	70.5	0.71	27.38	1.41	-	-
9	rMXPAT	62.81	0.33	34.74	2.11	-	-

Table S2. Peak position of elements in composites from XPS

Eleme	MXP	MXPAT	MXPAT	MXPATP	MXPAT	MXPAT	uMXP	dMXP	rMXP
nts	AT	PN	PA	NPA	PPy	PTh	AT	AT	AT
C1S	285.6	284.49	285.78	285.84458.	285.1	285.14	284.12	284.05	284.66
	6			31					
Ti2p	474.9	458.55	458.87	532.49	448.18	457.24	457.9	457.99	460.91
	8								
Ols	544.9	532.12	532.5	687.49	525.18	531.78	531.41	531.31	531.97
	8								
F1s	697.9	687.36	687.51	401.44	678.18	683.72	684.72	684.89	685.18
	8								
N1s	-	399.48	401.49	-	399.5	-	-	-	-
S2p	-	-	-	-	-	167.75	-	-	-

Figure S4. XPS of FCCNW, CCNW and db-MXene

Figure S6. XRD of composites

Composites	Peak pos	sitions (20 angle)	
MXPAT	9.46	19.05, 21.44	33.92, 36.78, 38.78, <u>38.86</u> , 41.74, 44.93, 48.45, 50.35, 52.28,
			56.43, 60.10, 65.39, 70.33, 74.00, 75.77, 78.64, 82.79, 83.44,
			87.11
MXPATPN	9.79	18.4, 19.36,	34.1, 36.93, <u>39.01</u> , 41.89, 45.08, 48.61, 52.45, 56.60, 60.28,
		21.61, 22.57,	65.54, 70.66, 74.18, 75.77, 78.81, 80.88, 83.60, 87.27
		25.9	
MXPATPA	6.27,	19.6, 21.6,	33.92, 35.03, 36.63, <u>38.86</u> , 40.93, 41.74, 44.93, 48.45, 56.60,
	10.57	23.9, 25.8	57.87, 60.10, 65.54, 70.50, 74.00, 75.77, 78.64, 83.27, 87.12
MXPATPNPA	9.88	19.37, 20.47,	28.53, 31.69, 34.22, 35.32, 36.89, <u>39.27</u> , 41.95, 45.11, 48.74,
		21.57, 22.67	52.69, 56.89, 60.43, 65.82, 70.87, 74.18, 76.08, 78.93, 83.82,
			87.45
MXPATPPy	9.94	19.53, 21.92,	34.39, 35.51, 37.11, <u>39.34</u> , 41.26, 42.22, 43.01, 45.41, 48.93,
		25.3, 25.9	50.68, 52.60, 56.91, 60.58, 65.87, 68.74, 70.97, 74.33, 76.25,
			78.96, 83.27, 87.59
MXPATPTh	9.79	20.01, 21.61	34.22, 35.33, 36.39, <u>39.18</u> , 42.05, 45.26, 48.76, 50.35, 52.60,
			54.53, 56.76, 60.43, 65.70, 70.66, 74.33, 76.01, 78.96, 81.04,
			83.27, 83.27, 83.92, 87.60
uMXPAT	5.94,	18.57, 19.84	33.44, 34.71, 36.15, <u>38.38</u> , 41.26, 44.45, 48.12, 51.97, 56.12,
	8.98		59.79, 65.22, 70.18, 73.52, 75.29, 83.12, 86.94

(h)	(i)
E' 87 D	1:00

Figure S7. Raman spectra comparison of composite in different range.

 Table S4. Peak position of Raman shift

Composites	Peak positions (cm ⁻¹)
MXPAT	2176.62, 2931.68, 2230.85, 3127.97
MXPATPN	412.73, 824.03, 883.7, 1135.95, 1179.66, 1327.15, 1346.36, 1431.69, 1602.49,
	1651.99, 1665.56, 1805.96, 1921.52, 2006.95, 2183.51, 2774.51, 2969.56,
	3121.13, 3223.35
MXPATPA	1373.37, 1597.79, 2217.58, 3125.83
MXPATPNPA	1608.20, 2215.77, 3009.19, 3350.14
MXPATPPY	984.11, 1049.67, 1566.89, 2221.85, 2937.75, 3129.80
MXPATPTh	2117.92, 2224.20, 2903.55, 3169.52
uMXPAT	2109.29, 2072.44, 2219.35, 2905.28, 3162.74
dMXPAT	1761.03, 2144.29, 2827.47, 3117.97
rMXPAT	2238.50, 3163.90

Figure S8. (a-g) TGA and DTG analysis of composites (h) Thermal diffusivity, thermal conductivity and Heat capacity of the composites.

Composites	Temperature	Total weight loss (%)
MXPAT	30-194.17	16.81
	194.17-363.89	59.44
	363.89-1000	65.69
MXPATPN	30-194.81	14.71
	194.81-370.91	48.62
	370.91-1000	58.86
MXPATPA	30-190.77	13.37
	190.77-363.89	49.29
	363.89-1000	56.67
MXPATPNPA	30-194.17	13.86
	194.17-363.89	46.71
	363.89-1000	55.09
MXPATPPy	30-180.14	14.33
	180.14-379.84	58.18
	379.84-1000	66.11
MXPATPTh	30-176.52	13.65
	176.52-372.82	57.05
	372.82-1000	63.54
uMXPAT	30-185.45	13.69
	185.45-354.96	51.93
	354.96-1000	59.05

Composites	Endothermic peaks	Exothermic peaks
MXPAT	151.85, 266.69, 424.08	194.17, 363.89
MXPATPN	139.52, 254.36, 424.08	194.81, 370.91
MXPATPA	146.53, 263.08, 424.08	190.77, 363.89
MXPATPNPA	146.53, 256.06, 424.08	194.17, 363.89
MXPATPPy	135.90, 247.34, 424.08	180.14, 379.84
MXPATPTh	134.20, 266.70, 424.08	176.52, 372.82
uMXPAT	128.88, 270.31, 424.08	185.45, 354.96

Table S6. Derivative Thermogravimetry (DTG) analysis

 Table S7. SE of fabricated composites

SE(dB)	MXPA	MXPA	MXPA	MXPATP	MXPAT	MXPAT	uMXP	dMXP	rMXPA
	Т	TPN	TPA	NPA	PPy	PTh	AT	AT	Т
MAX	41.31	39.33	45.18	44.08	41.31	42.99	39.69	43.74	44.31
MIN	38.55	37.83	39.00	37.87	39.65	40.25	36.04	41.54	39.94
Aveage	39.29	38.24	40.48	40.96	40.00	41.44	37.25	42.40	42.15
SSE (dB.g ⁻ ¹ .cm ³)	29.95	27.99	33.26	31.98	40.49	33.10	28.85	-	-
SSE/t (dB.g ⁻ ¹ .cm ²)	575.96	321.72	236.45	399.75	253.06	359.78	721.25	-	-
SE/t (dB.m m ⁻¹)	1.463	1.393	1.6	1.561	1.463	1.522	1.406	1.549	1.569

 Table S8. SE_A of fabricated composites

SEA	MXPA	MXPA	MXPA	MXPATP	MXPATP	MXPAT	uMXP	dMXP	rMXPA
(dB)	Т	TPN	TPA	NPA	Ру	PTh	AT	AT	Т
Max	30.58	30.44	34.85	36.56	37.57	34.87	29.99	34.48	34.09
Min	28.25	29.37	29.81	29.46	36.46	30.62	26.24	32.91	29.72
Averag	29.17	29.83	31.13	33.28	36.77	32.99	27.55	33.50	32.02

Table S9. SE_R of fabricated composites

$SE_R(dB)$	MXPA	MXPA	MXPA	MXPAT	MXPA	MXPA	uMXP	dMXP	rMXP
	Т	TPN	TPA	PNPA	TPPy	TPTh	AT	AT	AT
MAX	11.44	9.84	10.34	9.09	4.71	9.77	10.11	9.77	11.43
Min	9.27	7.40	8.41	7.37	2.27	7.87	9.18	8.49	9.47
Average	10.12	8.42	9.36	7.69	3.24	8.45	9.69	8.91	10.13

Table S10. The bandwidth comparison at about 99.99% shielding efficiency.

Composites	EMI SE at 99.99%	Maximum	point	Bandwidth (GHz)	Range (GHz)
	efficiency (dB)	(dB)			
MXPAT	39.88	41.31		8.82-12.4	3.58
dMXPAT	42.89	43.74		8.24-9.72	1.48
rMXPAT	41.15	44.31		8.24-11.19	2.95

uMXPAT	39.18	39.69	8.31-12.4	4.09
MXPATPNPA	38.53	44.08	8.2-11.98	3.78
MXPATPTh	40.29	42.99	8.42-12.36	3.94
MXPATPA	40.94	45.18	9.31-12.4	3.09
MXPATPPy	39.83	41.31	10.06-12.4	2.34
MXPATPN	37.82	39.33	8.2-12.4	4.2

Table S11. EMI shielding comparison of previous work published

	Composition	Polymer	Fillers	Densit	t	SE	SSE	SSE/t(d	Re
		matrix	(%)	у	(mm)	(dB)	(dB.g ⁻	B.g-	f.
				(g.cm ⁻ 3)			¹ .cm ³)	¹ .cm ³)	
1	Ti ₃ C ₂ T _x /SA	SA	90	2.31	0.00 08	57	24.6	30830	1
2	Ti ₃ C ₂ T _x /CNF	Cellulos e	90	2.10	0.04 7	25.8	12.44	2647	2
3	$Ti_3C_2T_x$ areogel	Bulk	MXene	0.0055	1	44.8	8145.5	81455. 0	3
4	Ti ₃ CNT _x	Bulk	MXene	0.0055	1	42.3	7690.9	62909. 0	3
5	Ti ₂ CT _x	Bulk	MXene	0.0055	1	48.5	8818.2	88182. 0	3
6	CNT sponge	Bulk	CNT	0.018	2.4	20	1100.0	462.2	4
7	MWCNT/WPU Composites	WPU	MWCN T	0.02	2.3	23	1148.0	4991.0	5
8	CNF/Fe3O4	Epoxy	10	*	13	20	*	*	6
9	rGO/cellulose fiber	Cellulos e	50	0.0028	5.0	47.8	16890. 0	33780. 0	7
10	CNT/polycarbona te	polycarb onate	20	1.13	2.1	39	34.5	154.0	8
11	high structure carbon black (HS- CB)/ABS	ABS	15	0.96	1.1	20	20.9	190	9
12	Graphene/ polyurethane (PU)	PU	GN	0.030	60	32	1066.7	177.8	10
13	SWCNT- Polystyrene foam	PS	7	0.56	1.2	18.5	33	275	11
14	carbon black filled EPDM	EPDM	37.5	0.594	2	18	30.3	15.1	12
15	Polypropylene/Sta inless-Steel	PP	1.1	0.64	3.1	48	75	241.9	13
16	Polyetherimide/G raphene	PEI	10	0.291	2.3	12.8	44	191.3	14
17	C/MWCNTs/ Fe3O4	Phenolic foam	7	0.126	5	62	549	1098.7	15
18	Au/GN/Fe3O4/po ly(dimethyl siloxane) (PDMS)	PDMS	*	0.116	2	30.5	263	1315	16
19	Polyimide/ reduced graphene	PI	16	0.022	0.8	21	937	11712	17

20	Greaphene foam	Bulk	GN	0.06	0.3	25.2	420	14000	18
21	Graphene/PDMS	PDMS	*	0.06	1	30	500	5000	18
22	Graphene- Polystyrene	PS	*	0.27	2.5	17.3	64.07	256.29	18
23	MXCS	CF	*	0.153	0.38	50.5	324.15	8397.7 8	19
24	MXCB	CF	*	0.229	0.39 8	47.6	205.52	5163.7 5	19
25	MWCNT/CNF	CNF	*	0.058	0.13	28.2 2	486.54	35256	19
26	Copper	Bulk	Bulk	9	3.1	90	10	32	20
27	Polypropylrnr/car bon fiber	PP	10 vol%	0.735	3.1	25	34	109	20
28	Stainless steel	Bulk	Bulk	8.091	4	89	11	27	20
29	Poly(ether sulfonate) (PES)- Nickel filaments	PES	7 vol %	1.851	2.85	87	47	165	20
30	PS-Cu nanowire	PS	2.1Vol %	*	0.21	35	*	*	20
31	MWCNT/ polyurethane	PU	10.6	*	0.4	24.7	*	*	21
32	Ag/PAN	PAN	20	*	0.75	40	*	*	22
33	Ag/BaTiO3	PVDF	20	*	1.2	21			22
34	Au/MWCNT	PVDF	3	*	0.5	26.7	*	*	22
35	GNP/PLLA	PLLA	15	*	1.5	15.5	*	*	22
36	MWCNT+PP	PP	8	*	3.2	29.4 7	*	*	23
37	CF+PP	PP	18	*	3.2	19.8	*	*	23
38	1 wt% CNT+30 wt% CF+PP	PP	31	*	1	16	*	*	23
39	SWCNTs/Epoxy	Epoxy	15	*	2	25	*	*	24
40	Graphite/PE	PE	18.7 vol%	*	3	33	*	*	24
41	MXPATPN	PAT- PpAP	*	1.217	0.62	45.1 8	33.26	236.45	Th is
42	MXPATPNPA	PAT- PpAP- PANI	*	1.281	0.8	44.0 8	31.98	399.75	wo rk
	* indicates that the values were either not available or impossible to calculate.								

Table S12. The short-listed EMI shielding comparison for graph (Figure 11f)

Composition	No		Polymer matrix	t (mm)	SE (dB)
Ti3C2Tx /SA	1	MX/SA	SA	8.00E-04	57
Ti3C2Tx /CNF	2	MX/CNF	Cellulose	0.047	25.8
Ti3C2Tx areogel	3	MX/gel	Bulk	1	44.8
Ti3CNTx	4	MXN	Bulk	1	42.3

Ti2CTx	5	Ti2C	Bulk	1	48.5
CNT sponge	6	CNT/spo	Bulk	2.4	20
MWCNT/WPU Composites	7	CNT/PU/C	WPU	2.3	23
CNT/polycarbonate	8	CNT/PC	polycarbonate	2.1	39
high structure carbon black (HS-CB)/ABS	9	HSBC/ABS	ABS	1.1	20
SWCNT-Polystyrene foam	10	CNT/PS/foam	PS	1.2	18.5
carbon black filled EPDM	11	CB/EPDM	EPDM	2	18
Polypropylene/Stainless- Steel	12	PP/SS	РР	3.1	48
Polyetherimide/Graphene	13	PI/GN	PEI	2.3	12.8
Au/GN/Fe3O4/poly(dimethyl siloxane) (PDMS)	14	Au/GN/FeO	PDMS	2	30.5
Polyimide/ reduced graphene	15	PI/rGN	PI	0.8	21
Graphene foam	16	GN/foam	Bulk	0.3	25.2
Graphene/PDMS	17	GN/PDMS	PDMS	1	30
Graphene-Polystyrene	18	GN/PS	PS	2.5	17.3
MXCS	19	MXCS	CF	0.386	50.5
МХСВ	20	МХСВ	CF	0.398	47.6
MWCNT/CNF	21	CNT/CNF	CNF	0.138	28.22
Polypropylene/carbon fiber	22	PP/CF	PP	3.1	25
PS-Cu nanowire	23	PS/CuNW	PS	0.21	35
MWCNT/ polyurethane	24	CNT/PU	PU	0.4	24.7
Ag/PAN	25	Ag/PAN	PAN	0.75	40
Ag/BaTiO3	26	Ag/BTO	PVDF	1.2	21
Au/MWCNT	27	Au/CNT	PVDF	0.5	26.7
GNP/PLLA	28	GNP/PLLA	PLLA	1.5	15.5
MWCNT+PP	29	CNT/PP	PP	3.2	29.47
CF+PP	30	CF/PP	PP	3.2	19.8
1 wt% CNT+30 wt% CF+PP	31	CNT/CF/PP	PP	1	16
SWCNTs/Epoxy	32	CNT/epox	Ероху	2	25
Graphite/PE	33	G/PE	PE	3	33
MXene-PAT-PpAP	34	MXPATPA	PAT-PpAP	0.62	45.18
MXene-PAT-PpAP-PANI	35	MXPATPNP A	PAT-PpAP-PANI	0.8	44.08

Figure S9. Stress and strain curve for composites

Reference.

- Shahzad, F., Alhabeb, M., Hatter, C.B., Anasori, B., Hong, S.M., Koo, C.M. and Gogotsi, Y., 2016. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353(6304), pp.1137-1140.
- Cao, W.T., Chen, F.F., Zhu, Y.J., Zhang, Y.G., Jiang, Y.Y., Ma, M.G. and Chen, F., 2018. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS nano, 12(5), pp.4583-4593.
- Han, M., Yin, X., Hantanasirisakul, K., Li, X., Iqbal, A., Hatter, C.B., Anasori, B., Koo, C.M., Torita, T., Soda, Y. and Zhang, L., 2019. Anisotropic MXene Aerogels with a Mechanically Tunable Ratio of Electromagnetic Wave Reflection to Absorption. Advanced Optical Materials, 7(10), p.1900267.
- Crespo, M., González, M., Elías, A.L., Pulickal Rajukumar, L., Baselga, J., Terrones, M. and Pozuelo, J., 2014. Ultra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz range. physica status solidi (RRL)–Rapid Research Letters, 8(8), pp.698-704.
- Zeng, Z., Jin, H., Chen, M., Li, W., Zhou, L. and Zhang, Z., 2016. Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Advanced Functional Materials, 26(2), pp.303-310.
- Crespo, M., Méndez, N., González, M., Baselga, J. and Pozuelo, J., 2014. Synergistic effect of magnetite nanoparticles and carbon nanofibres in electromagnetic absorbing composites. Carbon, 74, pp.63-72.
- 7. Wan, Y.J., Zhu, P.L., Yu, S.H., Sun, R., Wong, C.P. and Liao, W.H., 2017. Ultralight, superelastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding. Carbon, 115, pp.629-639.

- Pande, S., Chaudhary, A., Patel, D., Singh, B.P. and Mathur, R.B., 2014. Mechanical and electrical properties of multiwall carbon nanotube/polycarbonate composites for electrostatic discharge and electromagnetic interference shielding applications. Rsc Advances, 4(27), pp.13839-13849.
- Al-Saleh, M.H., Saadeh, W.H. and Sundararaj, U., 2013. EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon, 60, pp.146-156.
- Shen, B., Li, Y., Zhai, W. and Zheng, W., 2016. Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS applied materials & interfaces, 8(12), pp.8050-8057.
- Yang, Y., Gupta, M.C., Dudley, K.L. and Lawrence, R.W., 2005. Novel carbon nanotube– polystyrene foam composites for electromagnetic interference shielding. Nano letters, 5(11), pp.2131-2134.
- 12. Ghosh, P. and Chakrabarti, A., 2000. Conducting carbon black filled EPDM vulcanizates: assessment of dependence of physical and mechanical properties and conducting character on variation of filler loading. European Polymer Journal, 36(5), pp.1043-1054.
- Ameli, A., Nofar, M., Wang, S. and Park, C.B., 2014. Lightweight polypropylene/stainlesssteel fiber composite foams with low percolation for efficient electromagnetic interference shielding. ACS applied materials & interfaces, 6(14), pp.11091-11100.
- 14. Ling, J., Zhai, W., Feng, W., Shen, B., Zhang, J. and Zheng, W.G., 2013. Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS applied materials & interfaces, 5(7), pp.2677-2684.
- Li, Q., Chen, L., Ding, J., Zhang, J., Li, X., Zheng, K., Zhang, X. and Tian, X., 2016. Opencell phenolic carbon foam and electromagnetic interference shielding properties. Carbon, 104, pp.90-105.
- Sun, Y., Luo, S., Sun, H., Zeng, W., Ling, C., Chen, D., Chan, V. and Liao, K., 2018. Engineering closed-cell structure in lightweight and flexible carbon foam composite for highefficient electromagnetic interference shielding. Carbon, 136, pp.299-308.
- Li, Y., Pei, X., Shen, B., Zhai, W., Zhang, L. and Zheng, W., 2015. Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv 5 (31): 24342–24351. J Mater Chem C, 3(26), pp.6589-6599.
- Shen, B., Li, Y., Yi, D., Zhai, W., Wei, X. and Zheng, W., 2016. Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon, 102, pp.154-160.
- Raagulan, K., Braveenth, R., Ro Lee, L., Lee, J., Kim, B.M., Moon, J.J., Lee, S.B. and Chai, K.Y., 2019. Fabrication of Flexible, Lightweight, Magnetic Mushroom Gills and Coral-Like MXene–Carbon Nanotube Nanocomposites for EMI Shielding Application. Nanomaterials, 9(4), p.519.
- 20. Ameli, A., Nofar, M., Wang, S. and Park, C.B., 2014. Lightweight polypropylene/stainlesssteel fiber composite foams with low percolation for efficient electromagnetic interference shielding. ACS applied materials & interfaces, 6(14), pp.11091-11100.

- Li, H., Yuan, D., Li, P. and He, C., 2019. High conductive and mechanical robust carbon nanotubes/waterborne polyurethane composite films for efficient electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 121, pp.411-417.
- 22. Li, J., Peng, W.J., Fu, Z.J., Tang, X.H., Wu, H., Guo, S. and Wang, M., 2019. Achieving high electrical conductivity and excellent electromagnetic interference shielding in poly (lactic acid)/silver nanocomposites by constructing large-area silver nanoplates in polymer matrix. Composites Part B: Engineering, 171, pp.204-213.
- Shajari, S., Arjmand, M., Pawar, S.P., Sundararaj, U. and Sudak, L.J., 2019. Synergistic effect of hybrid stainless steel fiber and carbon nanotube on mechanical properties and electromagnetic interference shielding of polypropylene nanocomposites. Composites Part B: Engineering, 165, pp.662-670.
- Wang, L., Qiu, H., Liang, C., Song, P., Han, Y., Han, Y., Gu, J., Kong, J., Pan, D. and Guo, Z., 2019. Electromagnetic interference shielding MWCNT-Fe3O4@ Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon, 141, pp.506-514.