Supporting Information

Zinc(II)-based coordination polymer encapsulated by Tb^{3+} as multiresponsive luminescent sensor for Ru^{3+} , Fe^{3+} , CrO_4^{2-} , $Cr_2O_7^{2-}$

and MnO_4^-

Yuandi Wu,^a Dongyang Liu,^a Meihua Lin,^a Jing Qian,^{a*,b,c}

Corresponding authors: a* <u>qianjinger@aliyun.com</u> (J. Qian)

a College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China

b Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, P. R. China

c Key Laboratory of Inorganic–Organic Hybrid Functional Materials Chemistry, Tianjin Normal University, Ministry of Education, Tianjin 300387, P. R. China

Fig. S1 FTIR pattern for Zn-CP.

polymer	Zn-CP		
CCDC	1882227 C2 42H2 29N0 %O0 29Zno 1		
Formula	4		
fw	69.40		
temp (K)	296(2)		
cryst syst	Tetragonal		
Space group	P4 ₃ 2 ₁ 2		
a(Å)	10.4340(10)		
b(Å)	10.4340(10)		
$c(\text{\AA})$	20.752(5)		
$\alpha = \beta = \gamma(^{\circ})$	90		
$V(A^3)$	2259.2(7)		
Ζ	28		
ho (Mg/m ³)	1.428		
Abs coeff (mm ⁻¹)	1.120		
F (000)	992		
GOF	0.924		

Table S1 Crystal data and structure refinement information for Zn-CP

$R_1/wR_2 [I > 2\sigma(I)]$	0.0310/0.0687
R_1/wR_2 (all data)	0.0406/0.0730

Bond lengths (Å)				
Zn(1)-N(2)#1	2.089(2)	Zn(1)-N(2)#2	2.089(2)	
Zn(1)-N(1)#3	2.104(2)	Zn(1)-N(1)	2.104(2)	
Zn(1)-O(1)	2.390(2)	Zn(1)-O(1)#3	2.390(2)	
N(2)-Zn(1)#4	2.089(2)			
Bond angles (°)				
N(2)#1-Zn(1)-N(2)#2	96.22(14)	N(2)#1-Zn(1)-N(1)#3	142.64(9)	
N(2)#2-Zn(1)-N(1)#3	94.05(11)	N(2)#1-Zn(1)-N(1)	94.05(11)	
N(2)#2-Zn(1)-N(1)	142.64(9)	N(1)#3-Zn(1)-N(1)	99.21(14)	
N(2)#1-Zn(1)-O(1)	91.01(9)	N(2)#2-Zn(1)-O(1)	84.85(8)	
N(1)#3-Zn(1)-O(1)	125.70(9)	N(1)-Zn(1)-O(1)	59.10(8)	
N(2)#1-Zn(1)-O(1)#3	84.85(8)	N(2)#2-Zn(1)-O(1)#3	91.01(9)	
N(1)#3-Zn(1)-O(1)#3	59.10(8)	N(1)-Zn(1)-O(1)#3	125.69(9)	
O(1)-Zn(1)-O(1)#3	173.81(11)			

Table S2 Selected bond lengths (A°) and angles (°) for Zn-CP

Fig. S2 Thermogravimetric curve of Zn-CP.

Fig. S3 PXRD patterns for Zn-CP: (a) simulated; (b) experimental; (c) 1 days after immersion in water; (d) 1 days after immersion in FeCl₃ solution (e) 1 days after immersion in CoCl₂ solution; (f) 1 days after immersion in NiCl₂

solution; (g) 1 days after immersion in $CuCl_2$ solution; (h) 12 h after immersion in CH_3OH ; (i) 12 h after immersion in C_2H_5OH ; (j) 12 h after immersion in acetone; (k) 12 h after immersion in CH_2Cl_2 ; (l) 12 h after immersion in DMF. PXRD pattern calculated from the single-crystal structure.

Fig. S4 PXRD patterns for Zn-CP at different temperatures, 120° C (red line); 160° C (green line); 180° C (blue line) and the simulated one calculated from the single crystal structure analysis (black line).

Fig. S5 PXRD patterns for Tb³⁺@Zn-CP: (a) simulated of Zn-CP; (b) experimental of Zn-CP; (c) experimental of

Tb³⁺@Zn-CP; (d) experimental of Tb³⁺@Zn-CP 12 h after immersion in FeCl₃ solution; (e) experimental of Tb³⁺@Zn-CP 12 h after immersion in RuCl₃ solution; (f) experimental of Tb³⁺@Zn-CP 12 h after immersion in KMnO₄ solution; (g) experimental of Tb³⁺@Zn-CP 12 h after immersion in K₂CrO₄ solution; (h) experimental of Tb³⁺@Zn-CP 12 h after immersion in K₂CrO₄ solution; (h) experimental of Tb³⁺@Zn-CP 12 h after immersion in K₂CrO₄ solution; (h) experimental of Tb³⁺@Zn-CP 12 h after immersion in K₂CrO₄ solution; (h) experimental of Tb³⁺@Zn-CP 12 h after immersion in K₂CrO₄ solution; (h) experimental of Tb³⁺@Zn-CP 12 h after immersion in K₂CrO₄ solution; (h) experimental of Tb³⁺@Zn-CP 12 h after immersion in K₂CrO₄ solution; (h) experimental of Tb³⁺@Zn-CP 12 h after immersion in K₂CrO₄ solution; (h) experimental of Tb³⁺@Zn-CP 12 h after immersion in K₂CrO₄ solution; (h) experimental of Tb³⁺@Zn-CP 12 h after immersion in K₂CrO₄ solution; (h) experimental of Tb³⁺@Zn-CP 12 h after immersion in K₂CrO₄ solution; (h) experimental of Tb³⁺@Zn-CP 12 h after immersion in K₂CrO₄ solution; (h) experimental of Tb³⁺@Zn-CP 12 h after immersion in K₂CrO₄ solution.

Table S3 The detailed ICP studies of Tb ³⁺ @Zn-C	Ľ	p)
--	---	---	---

Sample	Zn(ppm)	Tb(ppm)	Mn(ppm)	Ru(ppm)	Cr(ppm)	Fe(ppm)
Tb ³⁺ @Zn-CP	1.312	0.0398				
Tb ³⁺ @Zn-CP+Fe ³⁺	2.897	0.0239				0.1017
$Tb^{3+}@Zn-CP+Ru^{3+}$	1.093	Below detection limit		Below detection limit		
Tb ³⁺ @Zn-CP+MnO ₄ -	2.354	0.0530	0.2275			
Tb ³⁺ @Zn-CP+CrO4 ²⁻	2.747	0.0150			Below detection limit	
$Tb^{3+}@Zn-CP+Cr_2O_7^{2-}$	2.509	0.0171			Below	
detection limit/ ppm		0.007		0.003	detection limit 0.002	

Fig. S6 The XPS spectra of Zn-CP and Tb³⁺@Zn-CP samples: (a) the survey spectrum,

the high resolution XPS spectra of (b) Tb 3d, (c) Tb 4d, respectively.

Fig. S7 liquid-state luminescent spectra of modbc ligand (blue), Zn-CP (green), Tb³⁺@Zn-CP (orange and navy) in 5 mM Tris-HCl/NaCl buffer (pH 7.0). slit width: 4 nm.

Fig. S8 Liquid-state luminescent spectra of Zn-CP upon excitation at about 312 nm (a) and Tb³⁺@Zn-CP upon excitation at about 330 nm (b) with different pH values (1.0~13.0) in H₂O.

Fig. S9 Luminous intensity of Zn-CP upon different ions (Ru³⁺, Ag⁺, Cd²⁺, Zn²⁺, Pb²⁺, Ca²⁺, Mn²⁺, Cu²⁺, Co²⁺, Ni²⁺, Fe²⁺, Hg²⁺ and Fe³⁺) in 5 mM Tris-HCl/NaCl buffer (pH 7.0). [Zn-CP] = 10 μ M and [ions] = 50 μ M. λ_{ex} : 312 nm, λ_{F} : 395 nm, slit width: 4 nm.

Fig. S10 Luminous intensity of Zn-CP upon different ions $(SO_4^{2-}, PO_4^{3-}, CrO_4^{2-}, Cr_2O_7^{2-}, MnO_4^{-}, I^-, CO_3^{2-}, HCO_3^{-}, C_2O_4^{2-})$ in 5 mM Tris-HCl/NaCl buffer (pH 7.0). [Zn-CP] = 10 μ M and [ions] = 50 μ M. λ_{ex} : 312 nm, λ_F : 395 nm, slit width: 4 nm.

Fig. S11 Luminescence quenching of Tb³⁺@Zn-CP in 5 mM Tris-HCl/NaCl buffer (pH 7.0) with gradual addition of 1 mM solution of Fe³⁺. λ_{ex} : 330 nm, λ_F : 390 nm, slit width: 4 nm. [Tb³⁺@Zn-CP] = 10 μ M.

Fig. S12 Luminescence quenching of Tb³⁺@Zn-CP in 5 mM Tris-HCl/NaCl buffer (pH 7.0) with gradual addition of 1 mM solution of Ru³⁺. λ_{ex} : 330 nm, λ_F : 390 nm, slit width: 4 nm. [Tb³⁺@Zn-CP] = 10 μ M.

Fig. S13 the Stern–Volmer plots of I_0/I versus [Fe³⁺] and [Ru³⁺], respectively (insets: the related Stern–Volmer plots at low [Fe³⁺] and [Ru³⁺]. λ_{ex} : 330 nm, λ_F : 390 nm, slit width: 4 nm. [Tb³⁺@Zn-CP] = 10 μ M.

S. No	Probe	LOD (M)	Ref
1	{[Cd(L)-(BPDC)]·2H ₂ O}n probe	2.21 ×10 ⁻⁶ for Fe ³⁺	S1
	$\{[Cd(L)(SDBA)(H_2O)] \cdot 0.5H_2O\}n \text{ probe}$	7.14×10^{-6} for Fe ³⁺	
2	Zn-L-MOF probe	6.4×10^{-6} for Fe ³⁺	S2
3	Zn(II)-based MOF probe	2×10^{-6} for Fe ³⁺	S 3
4	Ru probe	5.03 nm means	S4
		0.51 ppb for Ru ³⁺	
5	Europium-Based MOF probe	0.793× 10 ⁻⁶ for	S5
		Fe ³⁺	
6	${[Eu(Hdcppa)(H_2O)_2] \cdot H_2O}n$ probe	10 ⁻⁶ for Fe ³⁺	S6
7	Tb ³⁺ @Cd-P probe	6.6×10^{-7} for Fe ³⁺	S7
8	Cd-P probe	4.7×10^{-8} for Fe ³⁺	S7
9	[Zn(modbc) ₂]n	0.57×10^{-6} for Fe ³⁺	This work
10	[Zn(modbc) ₂]n	0.27× 10 ⁻⁶ for	This work
		Ru ³⁺	

Table S4. Comparison of the probes with literature reports for sensing Fe³⁺, Ru³⁺.

S1. S. G. Chen, Z. Z. Shi, L. Qin, H. L. Jia, H. G. Zheng, Two New Luminescent Cd(II)-Metal–Organic Frameworks as Bifunctional Chemosensors for Detection of Cations Fe^{3+} , Anions CrO_4^{2-} , and $Cr_2O_7^{2-}$ in Aqueous Solution, *Cryst. Growth Des.* 2017, **17**, 67–72.

S2. Yu, C. Y.; Sun, X. D.; Zou, L. F.; Li, G. H.; Zhang, L. R.; Liu, Y. L. A Pillar-Layered Zn-LMOF with Uncoordinated Carboxylic Acid Sites: High Performance for Luminescence Sensing Fe³⁺ and TNP. *Inorg. Chem.*

S3. Lv, R.; Li, H.; Su, J.; Fu, X.; Yang, B. Y.; Gu, W.; Liu, X. Zinc Metal–Organic Framework for Selective Detection and Differentiation of Fe(III) and Cr(VI) Ions in Aqueous Solution. *Inorg. Chem.* 2017, *56*, 12348–12356.

S4. B. Chen, F. L. Song, S. G. Sun, J. L.i Fan, X. J. Peng, A Highly Sensitive Fluorescent Chemosensor for Ruthenium: Oxidation Plays a Triple Role, *Chem. Eur. J.* 2013, **19**, 10115–10118.

S5. Purna, C. R.; Mandal, S. Europium-Based Metal–Organic Framework as a Dual Luminescence Sensor for the Selective Detection of the Phosphate Anion and Fe³⁺ Ion in Aqueous Media. *Inorg. Chem.* **2018**, *57*, 11855–11858

S6. Zhang, H. J.; Fan, R. Q.; Chen, W.; Fan, J. Z.; Dong, Y. W.; Song, Y.; Du, X.; Wang, P.; Yang, Y. L. 3D Lanthanide Metal–Organic Frameworks Based on Mono-, Tri-, and Heterometallic Tetranuclear Clusters as Highly Selective and Sensitive Luminescent Sensor for Fe³⁺ and Cu²⁺ Ions. *Cryst. Growth Des.* **2016**, *16*, 5429–5440.

S7 Y. D. Wu, M. H. Lin, D. Y. Liu, M. Liu, J. Qian, Two-dimensional Cd(II) coordination polymer encapsulated by Tb³⁺ as a reversible luminescent probe for Fe³⁺. *RSC Adv.*, **2019**, *9*, 34949–34957.

Fig. S14 The relative fluorescence intensity of a 10 μ M solution of Tb³⁺@ Zn-CP upon addition of 1.0 and 9.0 equiv of Fe³⁺ in the presence of 9.0 equiv of background ions (Mⁿ⁺). λ_{ex} : 330 nm, λ_{F} : 390 nm, slit width: 4 nm.

Fig. S15 The relative fluorescence intensity of a 10 μ M solution of Tb³⁺@ Zn-CP upon addition of 1.0 and 9.0 equiv of Ru³⁺ in the presence of 9.0 equiv of background ions (Mⁿ⁺). λ_{ex} : 330 nm, λ_F : 390 nm, slit width: 4 nm.

Fig. S16 The variation of luminescent intensity of Tb³⁺@ Zn-CP at 390 nm with immersion time in 24 μM RuCl₃ aqueous solution (blue, a); with immersion time in 24 μM Fe(NO₃)₃ aqueous solution (olive, b).

Fig. S17 Luminescence quenching of Tb³⁺@Zn-CP in 5 mM Tris-HCl/NaCl buffer (pH 6.0) with gradual addition of 1 mM solution of $Cr_2O_7^{2-}$. λ_{ex} : 330 nm, λ_F : 390 nm, slit width: 4 nm. [Tb³⁺@Zn-CP] = 10 μ M.

Fig. S18 Luminescence quenching of Tb³⁺@Zn-CP in 5 mM Tris-HCl/NaCl buffer (pH 8.0) with gradual addition of 1 mM solution of CrO_4^{2-} . λ_{ex} : 330 nm, λ_F : 390 nm, slit width: 4 nm. [Tb³⁺@Zn-CP] = 10 μ M.

Fig. S19 Luminescence quenching of Tb³⁺@Zn-CP in 5 mM Tris-HCl/NaCl buffer (pH 7.0) with gradual addition of 1 mM solution of MnO_4^- . λ_{ex} : 330 nm, λ_F : 390 nm, slit width: 4 nm. [Tb³⁺@Zn-CP] = 10 μ M.

Fig. S20 the Stern–Volmer plots of I_0/I versus $Cr_2O_7^{2-}$, CrO_4^{2-} and MnO_4^- ion concentrations, respectively (insets: the related Stern–Volmer plots at low $[Cr_2O_7^{2-}]$, $[CrO_4^{2-}]$ and $[MnO_4^-]$. λ_{ex} : 330 nm, λ_F : 390 nm, slit width: 4 nm. $[Tb^{3+}@Zn-CP] = 10 \ \mu\text{M}.$

S. No	Probe	LOD	Ref
1	$[H_2N(CH_3)_2]_2[Zn_2L(HPO_3)_2] \text{ probe}$	$1.09 \times 10^{-6} \mathrm{M}$ for	S1
		$Cr_2O_7^{2-}$	
2	${[Cd(L)-(BPDC)] \cdot 2H_2O}n \text{ probe}$	3.76×10 ⁻⁵ M for	S2
	${[Cd(L)(SDBA)(H_2O)] \cdot 0.5H_2O}n$ probe	$Cr_2O_7^{2-}$	
		4.86×10^{-5} M for	
		CrO_4^{2-}	
3	$[Cd_{3}{Ir(ppy-COO)_{3}}_{2}(DMF)_{2}(H_{2}O)_{4}] \cdot 6$	145.1 ppb for	S3
	$H_2O \cdot 2DMF$ probe	$Cr_2O_7^{2-}$	
4	[Tb ₂ Ni ₃ (HCAM) ₆ (H ₂ O) ₁₂] n probe	$0.29 \times 10^{-6} \mathrm{M}$ for	S4
		MnO_4^-	
5	$\{[Ba_{3}La_{0.5}(\mu_{3}\text{-}L)_{2.5}(H_{2}O)_{3}(DMF)] \cdot (3DMF)\} n$	$0.28 \times 10^{-6} \mathrm{M}$ for	S5
	probe	MnO_4^-	
6	[Zn(modbc) ₂]n	0.43× 10 ⁻⁶ M for	This work
		$Cr_2O_7^{2-}$	
7	[Zn(modbc) ₂]n	0.10× 10 ⁻⁶ M for	This work
		CrO4 ²⁻	
8	[Zn(modbc) ₂]n	0.15× 10 ⁻⁶ M for	This work
		MnO_4^-	

Table S5. Comparison of the probes with literature reports for sensing $Cr_2O_7^{2-}$, CrO_4^{2-} and MnO_4^{-} .

S1. Si-Fu Tang, Xiaomin Hou, A Highly Stable Dual Functional Zinc Phosphite Carboxylate as

Luminescent Sensor of Fe³⁺ and Cr₂O₇²⁻, Cryst. Growth Des. 2019, **19**, 45–48.

S2. S. G. Chen, Z. Z. Shi, L. Qin, H. L. Jia, H. G. Zheng, Two New Luminescent Cd(II)-Metal–Organic Frameworks as Bifunctional Chemosensors for Detection of Cations Fe^{3+} , Anions CrO_4^{2-} , and $Cr_2O_7^{2-}$ in Aqueous Solution, *Cryst. Growth Des.* 2017, **17**, 67–72.

S3. Kun Fan, Song-Song Bao, Wei-Xuan Nie, Chwen-Haw Liao, and Li-Min Zheng, Iridium(III)-Based Metal–Organic Frameworks as Multiresponsive Luminescent Sensors for Fe^{3+} , $Cr_2O_7^{2-}$, and ATP^{2-} in Aqueous Media, Inorg. Chem. 2018, 57, 1079–1089.

S4. Jing Qian, Mei-Mei Sun, Ming Liu, Wen Gu, Macromolecular Probe Based on a Ni II /Tb III Coordination Polymer for Sensitive Recognition of Human Serum Albumin (HSA) and MnO₄⁻, ACS Omega 2019, 4, 11949–11959.

S5. Ding, B.; Liu, S. X.; Cheng, Y.; Guo, C.; Wu, X. X.; Guo, J. H.; Liu, Y. Y.; Li, Y. Heterometallic Alkaline Earth-Lanthanide Ba(II)-La(III) Microporous Metal-Organic Framework as Bifunctional Luminescent Probes of

Al $^{3+}$ and MnO₄⁻. Inorg. Chem. 2016, 55, 4391–4402.

Fig. S21 The relative fluorescence intensity of a 10 μ M solution of Tb³⁺@ Zn-CP upon addition of 1.0 and 6.0 equiv of Cr₂O₇²⁻ in the presence of 6.0 equiv of background ions (Mⁿ⁺). λ_{ex} : 330 nm, λ_{F} : 390 nm, slit width: 4 nm.

Fig. S22 The relative fluorescence intensity of a 10 μ M solution of Tb³⁺@ Zn-CP upon addition of 1.0 and 6.0 equiv of CrO₄²⁻ in the presence of 6.0 equiv of background ions (Mⁿ⁺). λ_{ex} : 330 nm, λ_F : 390 nm, slit width: 4 nm.

Fig. S23 The relative fluorescence intensity of a 10 μ M solution of Tb³⁺@ Zn-CP upon addition of 1.0 and 6.0 equiv of MnO₄⁻ in the presence of 6.0 equiv of background ions (Mⁿ⁺). λ_{ex} : 330 nm, λ_F : 390 nm, slit width: 4 nm.

Fig. S24 The variation of luminescent intensity of Tb³⁺@ Zn-CP at 390 nm with immersion time in 24 μ M Cr₂O₇²⁻ aqueous solution (a); with immersion time in 24 μ M CrO₄²⁻ aqueous solution (b); with immersion time in 24 μ M MnO₄⁻ aqueous solution (c).

Fig. S25 Color of Tb³⁺@Zn-CP dipped in KMnO₄, K₂CrO₄, K₂Cr₂O₇, FeCl₃, RuCl₃ solution by normal light and UV lamp.

Fig. S26 The XPS spectra of Tb³⁺@Zn-CP+MnO₄⁻ samples: the survey spectrum and the high resolution XPS

spectra of Mn 2p.

Fig. S27 The high resolution XPS spectra of O 1s of Zn-CP, Tb³⁺@Zn-CP, Tb³⁺@Zn-CP+Ru³⁺, Tb³⁺@Zn-

 $CP + Fe^{3+}, \ Tb^{3+} @Zn - CP + Cr_2O_7{}^{2-}, \ Tb^{3+} @Zn - CP + CrO_4{}^{2-} \ and \ Tb^{3+} @Zn - CP + MnO_4{}^{-} \ samples.$

Fig. S28 UV–vis absorption spectra of Tb³⁺@Zn-CP with different concentration of MnO_4^- . Solvent: DMF/H₂O (3/1, v/v), c: 10 μ M for Tb³⁺@Zn-CP, from bottom to top, the equiv of MnO_4^- : 0, 5, 10, 15, 20, 25, 30.

Fig. S29 UV spectra of Fe³⁺, Ru³⁺, CrO₄²⁻, Cr₂O₇²⁻, MnO₄⁻ in H₂O; and Zn-CP, Tb³⁺@Zn-CP in DMF.

Fig. S30 The XPS spectra of Tb^{3+} @Zn-CP+ $Cr_2O_7^{2-}$ samples: the survey spectrum and the high resolution XPS

Fig. S31 The XPS spectra of Tb³⁺@Zn-CP+ CrO4²⁻ samples: the survey spectrum and the high resolution XPS

spectra of Cr 2p.

spectra of Cr 2p.

Fig. S32 UV–vis absorption spectra of Tb³⁺@Zn-CP with different concentration of $Cr_2O_7^{2-}$. Solvent: DMF/H₂O (3/1, v/v), c: 10 μ M for Tb³⁺@Zn-CP, from bottom to top, the equiv of $Cr_2O_7^{2-}$: 0, 5, 10, 15, 20, 25, 30.

Fig. S33 UV–vis absorption spectra of Tb³⁺@Zn-CP with different concentration of CrO_4^{2-} . Solvent: DMF/H₂O (3/1, v/v), c: 10 μ M for Tb³⁺@Zn-CP, from bottom to top, the equiv of CrO_4^{2-} : 0, 1, 2, 3, 4, 5,

6.

Fig. S34 The XPS spectra of Tb³⁺@Zn-CP+Fe³⁺ samples: the survey spectrum and the high resolution XPS spectra

of Fe 2p.

Fig. S35 UV–vis absorption spectra of Tb³⁺@Zn-CP with different concentration of Fe³⁺. Solvent: DMF/H₂O (3/1, v/v), c: 10 μ M for Tb³⁺@Zn-CP, from bottom to top, the equiv of Fe³⁺: 0, 1, 2, 3, 4, 5,6.

Fig. S36 The XPS spectra of Tb³⁺@Zn-CP+Ru³⁺ samples: the survey spectrum and the high resolution XPS

Fig. S37 UV–vis absorption spectra of Tb³⁺@Zn-CP with different concentration of Ru³⁺. Solvent: DMF/H₂O (3/1, v/v), c: 10 μ M for Tb³⁺@Zn-CP, from bottom to top, the equiv of Ru³⁺: 0, 1, 2, 3, 4, 5,

spectra of Ru 3d.

Fig. S38 Temporal fluorescence decay of 10 μ M Zn-CP with 50 μ M Fe³⁺, Ru³⁺, CrO₄²⁻, Cr₂O₇²⁻, MnO₄⁻ in 5 mM Tris-HCl/NaCl buffer (pH 7.0) excited at 330 nm and monitored at 390 nm; The data are obtained at 54.9 ps per point.

Table S6 Comparison of lifetimes of Tb³⁺@Zn-CP, Tb³⁺@Zn-CP+Fe³⁺, Tb³⁺@Zn-CP+Ru³⁺,

Compounds	$\tau_1(ns)$	B ₁ (%)	$\tau_2(ns)$	B ₂ (%)	τ(ns)
Zn-CP	47.28	2.25	2.15	97.75	3.17
Tb ³⁺ @Zn-CP	0.51	88.21	2.87	11.79	0.79
Tb ³⁺ @Zn-CP+Fe ³⁺	0.48	87.09	2.69	12.91	0.77
Tb ³⁺ @Zn-CP+Ru ³⁺	0.46	84.49	2.69	15.51	0.81
Tb ³⁺ @Zn-CP+MnO ₄ -	0.48	84.76	2.76	15.24	0.83
Tb ³⁺ @Zn-CP+CrO ₄ ²⁻	2.86	10.91	0.50	89.09	0.76
$Tb^{3+} @Zn-CP+Cr_2O_7^{2-}$	0.48	84.58	2.59	15.42	0.81

 $Tb^{3+} @Zn-CP+Cr_2O_7{}^{2-}, Tb^{3+} @Zn-CP+CrO_4{}^{2-} and \ Tb^{3+} @Zn-CP+MnO_4{}^{-}.$