Supplementary material

Coating-free TiO₂@ β -SiC alveolar foams as ready-to-use composite photocatalyst with tunable adsorption properties for water treatment

Marisa Rico-Santacruz¹, Patricia García-Muñoz ^{1*}, Clément Marchal¹, Nelly Batail², Charlotte Pham², Didier Robert¹, Nicolas Keller^{1*}

(1) Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS/University of Strasbourg,25 rue Becquerel 67087 Strasbourg, France.

(2) SICAT SARL, 20 Place des Halles,67000 Strasbourg, France.

Corresponding authors(*):garciamunoz@unistra.fr;nkeller@unistra.fr

- **Figure S1.** (A) Dark adsorption experiments performed on the $TiO_2@\beta$ -SiC composite foams with different TiO_2 wt.% contents and calcined at 600°C ; (B) Diuron photodegradation kinetics obtained on those $TiO_2@\beta$ -SiC composite foams, with the corresponding apparent kinetic rate constant (pseudo first order reaction rate).
- Figure S2. Spectral distribution of the simulated solar light.
- **Figure S3.** Calibration curve expressing the influence of the TiO_2 concentration on the apparent rate constant for the chlorophenol degradation (pseudo first order reaction). [4-CP]₀ = 20 mg/L; T=25°C; UV-A irradiance of 60 W m⁻².
- Figure S4. A) Dark adsorption experiments performed on TiO₂@β-SiC composite foams varying in terms of residual carbon content for different initial Diuron concentrations. B) Amount of diuron adsorbed as a function of the residual carbon content in wt.% for different initial Diuron concentrations.

Figure S1

For a preliminary study, $TiO_2@\beta$ -SiC composite foams were prepared with a TiO_2 content of 11 wt.%, 20 wt.% and 33 wt.% on the β -SiC skeleton foam during the step 3 of the sequential multi-step carburization SMS method. The $TiO_2@\beta$ -SiC composite foams obtained after final calcination at 600°C displayed similar Diuron adsorption behavior in the dark indepently of the TiO_2 content, as depicted in Fig. S1A. By contrast, Fig. S1B evidenced the superiority of the composite foam with a 20 wt.% TiO_2 content in terms of Diuron removal, as evidenced by the higher apparent kinetic rate constant for Diuron degradation, calculated at 3.1 10^{-3} min⁻¹. Therefore, the main part of the work was further performed on composite foams obtained by impregnating the β -SiC skeleton foam with TiO₂ at a 20 wt.% content.

Figure S1 (A) Dark adsorption experiments performed on the TiO₂@ β -SiC composite foams with different TiO₂ wt.% contents and calcined at 600°C ; **(B)** Diuron photodegradation kinetics obtained on those TiO₂@ β -SiC composite foams, with the corresponding apparent kinetic rate constant (pseudo first order reaction rate).

Figure S2. Spectral distribution of the simulated solar light.

Measurements have been performed using a wideband RPS900-W rapid portable spectroradiometer from International Light Technology.

Figure S3

Figure S3. Calibration curve expressing the influence of the TiO_2 concentration on the apparent rate constant for the chlorophenol degradation (pseudo first order reaction). [4-CP]₀ = 20 mg/L; T=25°C; UV-A irradiance of 60 W m⁻².

Figure S4. A) Dark adsorption experiments performed on $TiO_2@\beta$ -SiC composite foams varying in terms of residual carbon content for different initial Diuron concentrations. B) Amount of Diuron adsorbed as a function of the residual carbon content in wt.% for different initial Diuron concentrations.