Supplementary Information

Water structure

in solution and crystal molecular dynamics simulations compared to protein crystal structures

Octav Caldararu,¹ Majda Misini Ignjatović,¹ Esko Oksanen² and Ulf Ryde *¹

¹ Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124,

SE-221 00 Lund, Sweden

² Instruments Division, European Spallation Source Consortium ESS ERIC,

P. O. Box 176, SE-221 00 Lund, Sweden

Correspondence to Ulf Ryde, E-mail: Ulf.Ryde@teokem.lu.se,

Tel: +46 – 46 2224502, Fax: +46 – 46 2228648

2020-02-14

Table S1. Average residence time (ps) of water molecules in the crystallographic water sites of R- and S-galectin-3C in the four simulations. Residence times were calculated by counting the number of continuous frames in which a certain water molecule is within 2.5 Å of the crystallographic water sites in the MD simulations. The residence time is averaged over all crystallographic water sites and over all ten simulations.

Simulation	Residence time
Crystal R	84
Solution R	55
Crystal S	82
Solution S	52

Table S2. Recall of crystallographic water molecules in the 100 ns crystal or solution MD simulations of R– and S–galectin-3C against the 100 K (cryo) crystal structure from the grid-based global clustering. The number of crystallographic waters that have at least one MD water cluster within 1.0, 1.5, 2.0, 2.5 or 3.0 Å is given and the percentage of the total number of crystallographic waters is given in parentheses.

MD	1.0	1.5	2.0	2.5	3.0		
R-galectin-3C							
Crystal	38 (18%)	114 (54%)	177 (84%)	190 (90%)	205 (97%)		
Solution	36 (17%)	91 (43%)	168 (80%)	191 (91%)	200 (95%)		
S-galectin-3C							
Crystal	62 (29%)	112 (53%)	149 (71%)	192 (91%)	195 (93%)		
Solution	56 (27%)	117 (55%)	157 (74%)	187 (89%)	200 (95%)		

Table S3. Recall of crystallographic water molecules in the 100 ns MD simulations of R– and S–galectin-3C (in the crystal or in solution) against the 100 K crystal structure from the nongrid-based global clustering. The number of crystallographic waters that have at least one MD water cluster within 1.0, 1.5, 2.0, 2.5 or 3.0 Å is given and the percentage of the total number of crystallographic waters is given in parentheses.

MD	1.0	1.5	2.0	2.5	3.0			
R-galectin-3C								
Crystal	53 (25%)	123 (58%)	156 (74%)	177 (84%)	197 (93%)			
Solution	45 (21%)	118 (56%)	160 (76%)	177 (84%)	190 (90%)			
S-galectin-3C								
Crystal	57 (27%)	113 (53%)	146 (68%)	187 (87%)	205 (96%)			
Solution	49 (23%)	111 (52%)	150 (70%)	190 (89%)	200 (93%)			

Figure S1. Box volume in the 1 ns NPT equilibration of the crystal MD simulation of R-galectin-3C.

Figure S2. Protein heavy-atom RMSD in the 10×10 ns simulations and in the 100 ns simulations.

2 1,8 1,6 (Å) 1'4 RMSR 1,2 1 0,8 101 401 1 201 301 501 601 701 801 901 Time (ps x 100) 100 ns **—**10 ns **—**10 ns =10 ns - 10 ns • 10 ns -10 ns -**1**0 ns =10 ns = =10 ns 🛛 🗕 —10 ns —

(b) Solution MD simulation of R-galectin-3C

(d) Solution MD simulation of S-galectin-3C

Figure S3. Dependence of the (a) recall and (b) prediction statistics on the density threshold. The statistics were computed using a distance cutoff distance of 1.5 Å and using only the crystallographic water molecules in the cryo-temperature structure.

(b) prediction statistics

