Sustainable Preparation of Sun-light Active α-Fe₂O₃ Nanoparticles using Iron containing Ionic Liquids for Photocatalytic Applications

Komal,^a Harmandeep Kaur, ^a Money Kainth, ^a Sher Singh Meena, ^b Tejwant Singh Kang^{*, a} ^aDepartment of Chemistry, UGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar-143005, India ^b Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India

Supporting Information

**To whom correspondence should be addressed:* email: <u>tejwantsinghkang@gmail.com;</u> tejwant.chem@gndu.ac.in Tel: +91-183-2258802-Ext-3291

Annexure S1: Synthesis of ILs, [C_nmim][Cl]

Synthesis of ILs, $[C_n mim][Cl]$ (n = 4, 8 and 16) was done using method reported in literature with slight modifications.¹ The synthesized ILs have been characterised using ¹H-NMR spectroscopy. The characterization data for ILs is provided as Annexure S1 and Figure S1-S3 (Supporting Information). ¹H-NMR spectra were recorded on Brüker Ascend 400 spectrometer (AVANCE III HD console) using CDCl₃ as solvent.

Synthesis of iron containing ionic liquids (MILs)

Iron (metal) containing MILs were synthesized using the method reported in literature with slight modification.²⁻³ Equimolar amount of $[C_n mim][Cl]$ (n = 4, 8 and 16) with FeCl₃·6H₂O were stirred in round bottom flask for 4-5 hours using dichloromethane as solvent at room temperature. The product is dried using sodium sulphate while the solvent was evaporated through rotary evaporator resulting in a formation of $[C_n mim][FeCl_4]$ (n = 4, 8 and 16). The obtained MILs were washed twice with diethyl ether and distilled water followed by vacuum dying at 80°C for 24 h for removal of moisture. The synthesized MILs shows characteristic peaks of $[FeCl_4]^-$ in Raman and UV-visible spectra, (Figure S4 and S5, Supporting Information, respectively), confirming the formation of $[C_n mim][FeCl_4]$.

Characterization of [C_nmim][Cl] ILs

¹H NMR and mass spectroscopy data for synthesized ILs:

[C₄mim][Cl]: ¹H NMR (400 MHz, CDCl₃, δ-ppm) 0.876 (t, 3H, CH₃), 1.245 (m, 2H, (-CH₂-CH₃)), 1.903 (q, 2H, (N⁺-CH₂- CH₂-)), 4.132 (s, 3H, N-CH₃), 4.316 (t, 3H, N⁺-CH₂-CH₂-), 7.290 (d, 1H, N-CH-CH-N⁺), 7.416 (d, 1H, N-CH-CH-N⁺), 10.67 (s, 1H, N-CH-N⁺).

[C₈mim][Cl]: ¹H NMR (400 MHz, CDCl₃, δ-ppm) 0.872 (t, 3H, CH₃), 1.288 (br m, 2H, (-CH₂-CH₃)), 1.904 (q, 2H, (N⁺-CH₂- CH₂-)), 4.129 (s, 3H, N-CH₃), 4.318 (t, 3H, N⁺-CH₂-CH₂-), 7.332 (d, 1H, N-CH-CH-N⁺), 7.477 (d, 1H, N-CH-CH-N⁺), 10.55 (s, 1H, N-CH-N⁺). [C₁₆mim][Cl]: ¹H NMR (400 MHz, CDCl₃, δ-ppm) 0.879 (t, 3H, CH₃), 1.245 (br m, 2H, (-CH₂-CH₃)), 1.903 (q, 2H, (N⁺-CH₂- CH₂-)), 4.132 (s, 3H, N-CH₃), 4.316 (t, 3H, N⁺-CH₂-CH₂-), 7.290 (d, 1H, N-CH-CH-N⁺), 7.416 (d, 1H, N-CH-CH-N⁺), 10.67 (s, 1H, N-CH-N⁺).

Figure S1: ¹H NMR spectra of [C₄mim][Cl].

Figure S2: ¹H NMR spectra of [C₈mim][Cl].

Figure S3: ¹H NMR spectra of [C₁₆mim][Cl].

Figure S4: Raman spectra of $[C_{16}mim]$ [FeCl₄] as representative, showing the three characteristic peaks at 112, 333 and 390 cm⁻¹, which is in accordance with the literature reports.⁴

Figure S5: Absorbance spectra $[C_{16}mim]$ [FeCl₄] as representative, showing the characteristic peaks 247 and 366 nm, which is in accordance with the literature reports.⁵

Figure S6: FT-IR spectra of MIL and synthesized α -Fe₂O₃, after removal of MIL, have no absorption peak corresponding to MIL, indicating complete removal of MIL after washing.

Figure S7: Energy dispersive X-ray spectroscopy (EDAX) spectra of prepared α -Fe₂O₃ NPs.

Figure S8: Tauc plot to measure (A) direct band gap and (B) indirect band gap of synthesised α -Fe₂O₃ NPs.

Figure S9: Mössbauer spectra of (A) α -Fe-4; and (B) α -Fe-8.

Figure S10: Variation in absorbance band of RhB dye using different catalyst after stirring for 30 min in dark.

Table S1: Characteristic parameters of synthesized α -Fe₂O₃ NPs calculated from XRD, UV-Visible and TEM measurements.

Sample	20	d ₁₀₄ /	β	D ^a /	Band gap ^c / eV	Band gap ^d /	D ^b /
		(Å)		(nm)		eV	(nm)
a-Fe-4	33.40	2 679	3.8×10-3	40.0	2.12	1 42	95.5
	55.10	2.079	5.0*10	10.0	2.12	1.12	50.0
α-Fe-8	33.30	2.687	4.4×10-3	34.4	2.10	1.61	44.5
α-Fe-16	33.28	2.689	4.6×10-3	32.1	2.25	1.86	35.5

 d_{104} is interplaner distance for (104) plane, β is half-line width, D^a and D^b are the crystallite sizes obtained from XRD and TEM measurements respectively, c and d refers to direct and indirect band gap, respectively.

Sample	Iron	H_{hf} / Tesla	Δ / mm/s	δ / mm/s	Relative area
Code	Sites				R _A (%)
α-Fe-4	Sextet	51.63	-0.219	0.30	98.04
	Doublet	-	0.859	0.42	1.96
α-Fe-8	Sextet	51.59	-0.217	0.36	98.7
	Doublet	_	0.539	0.31	1.3
α-Fe-16	Sextet	51.47	-0.219	0.35	99.6
	Doublet	_	0.275	0.20	0.4

Table S2: Mössbauer parameters of α -Fe₂O₃ NPs obtained from Mössbauer spectra recorded at room temperature

Standard error in H_{hf} , Δ and δ is ± 0.002 , ± 0.006 and ± 0.003 , respectively

References

- J. Dupont, C. S. Consorti, P. A. Z. Suarez, R. F. de Souza, S. L. Fulmer, P. D. Richardson, T. E. Smith, S. Wolff, Org. Synth., 2002, 79, 236.
- 2. F. G. Sherif, L. J. Shyu, C. C. Greco, U.S. Patent, 5,824, 832 (1998). 25.
- 3. Q. F. Yue, H. G. Yang, M. L. Zhang, X. F. Bai, Adv. Mater. Sci. Eng., 2014, 454756
- 4. M. S. Sitze, E. R. Schreiter, E. V. Patterson, R. G. Freeman, *Inorg. Chem.* 2001, **40**, 2298-2304.
- Z. Guo, T. Zhang, M. Khan, S. Gao, T. Liu, J. Yu, *Electrochim. Acta*. 2014, 142, 132-143.