Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Geopolymer Template Route to Micro- and Meso-porous Carbon

Yi-Rong Pei,^a Jae-Hun Yang,^b Goeun Choi^c and Jin-Ho Choy *^{cd}

^a Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.

^b Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia.

^c Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea.

^d Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.

E-mail: jhchoy@dankook.ac.kr

Figure S1. Powder x-ray diffraction pattern in wide angle range of kaolinite, meta-kaolin derived through dihydroxylation of kaolinite at 750 $^{\circ}$ C for 10 h and EPG-2_0.1, EPG-2_0.5, EPG-2_0.6 which were synthesized with the molar ratio of CTAB/(Si+Al) = 0.1, 0.5 and 0.6.

Scheme S1 Structure model of porous geopolymer EPG-2_0.1.

Figure S2. TEM images of a) kaolinite and b) meta-kaolin.

Figure S3. NLDFT pore size distribution of EPC-2_0.1_S9, EPC-2_0.5_S9 and EPC-2_0.6_S9 in the pore size range of 0 ~ 200 nm.

	CO ₂ adsorption	Temperature	Pressure	Reference
	(mmol/g)	(К)	(atm)	
EPC-2_0.1_S9	3.04	273	1	This work
EPC-2_0.5_S9	2.77	273	1	This work
EPC-2_0.6_S9	2.80	273	1	This work
Porous Carbon (C)	2.8	273	1	1
Mesoporous carbon (CMK-3)	1.7	298	1	2
Activated graphite fibres (G-900)	1.3	298	1	3
Activated carbon	< 0.50	273	1	4
	3.66	273	30	4
Multi-walled CNT	< 0.50	273	1	4
	5.63	273	30	4

Table S1. Structural parameters and CO_2 uptakes of EPC-2_0.1_S9, EPC-2_0.5_S9, EPC-2_0.6_S9 and carbon materials from literatures.

Figure S4. Normalized Carbon K-edge XANES spectra of as-prepared porous carbons, EPC-2_0.1_S9, EPC-2_0.5_S9 and EPC-2_0.6_S9.

References

- 1. J. Ludwinowicz and M. Jaroniec, *Carbon*, **2015**, *82*, 297.
- 2. a) M. Sevilla and A. B. Fuertes, Energy Environ. Sci., 2011, 4, 1765; b) G. Chandrasekar, W. J. Son and
- W. S. Ahn, J. Porous Mater., 2009, 16, 545.
- 3. J. Przepiorski, M. Skrodzewicz and A. W. Morawski, Appl. Surf. Sci., 2004, 225, 235.
- 4. K. S. Lakhi, A. V. Baskar, J. S. M. Zaidi, S. S. Al-Deyab, M. E. Newehy, J. -H. Choy and A. Vinu, *RSC Adv.*, **2015**, *5*, 40183.