ARTICLE

Well-dispersed Pd nanoparticles on porous ZnO nanoplates via surface ion exchange for chlorobenzene-selective sensor

Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Received 00th January 20xx.

Zhenyu Feng,*^a Cuiling Gao,^b Xicheng Ma^a and Jinhua Zhan^a

Figure legends

- **Fig. S1.** TEM images and EDS spectra of 1% Pd²⁺@ZnO, 3% Pd²⁺@ZnO, 5% Pd²⁺@ZnO, and 10% Pd²⁺@ZnO, and HRTEM image of porous ZnO nanoplate
- Fig. S2. Pd 3d XPS spectra of 5% Pd²⁺@ZnO and 5% Pd@ZnO
- Fig. S3. Response/recovery curves of 5% Pd@ZnO and pure ZnO sensors towards chlorobenzene
- Fig. S4. Responses of 5% Pd@ZnO sensor toward chlorobenzene in different relative humidity
- Fig. S5. Responses of 5% Pd@ZnO and pure ZnO sensors toward chlorobenzene, 1,2-dichlorobenzene, and 1,3-dichlorobenzene
- Fig. S6. Nitrogen adsorption-desorption isotherms of 5% Pd@ZnO and pure porous ZnO nanoplates with BJH pore size distribution insets
- **Table S1.** Chlorobenzene-sensing comparation among results

 obtained in this work and reported in the literature

^{a.} Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China.

^{b.} Shandong Institute for Product Quality Inspection, Jinan, Shandong, 250102, P. R. China.

^{*} Corresponding author. E-mail: fengzhenyu@sdu.edu.cn; Tel: +86 53188363768.

Fig. S1. (a), (c), (d), (e), and (f) represent TEM images of the pure ZnO, 1% $Pd^{2+}@ZnO$, 3% $Pd^{2+}@ZnO$, 5% $Pd^{2+}@ZnO$, and 10% $Pd^{2+}@ZnO$ nanoplates, respectively. (b) shows HRTEM image of the pure ZnO nanoplate. (g), (h), (i), and (j) represent EDS spectra of the 1% $Pd^{2+}@ZnO$, 3% $Pd^{2+}@ZnO$, 5% $Pd^{2+}@ZnO$, and 10% $Pd^{2+}@ZnO$, respectively.

Fig. S2

Fig. S2. Pd 3d XPS spectra of the obtained materials: (a) 5% Pd²⁺@ZnO and (b) 5% Pd@ZnO.

Fig. S3

Fig. S3. Response/recovery curves of 5% Pd@ZnO and pure ZnO sensors towards chlorobenzene with 100 ppm at 440 °C.

Fig. S4. Responses of 5% Pd@ZnO sensor toward 100 ppm chlorobenzene in different relative humidity at 440 °C. The response is defined as the ratio of sensor resistance ($R_{hum-air}$) in humid air to that ($R_{hum-gas}$) in humid air with 100 ppm chlorobenzene.

Fig. S6

Fig. S6. Nitrogen adsorption-desorption isotherms with BJH pore size distribution insets of (a) pure porous ZnO nanoplates, (b) 5% Pd@ZnO. According to the IUPAC classification, the hysteresis loops corresponding to H3 type reveal the feature of mesoporous material. The specific surface areas of (a) and (b) are 23.28 ± 0.01 and 12.94 ± 0.01 m²/g, respectively.

Table S1. Chlorobenzene-sensing comparation among results obtained in this work and reported in the literature.

Sensor materials	Initial response temperature (°C)	Detection limit	Selectivity study	Response/recovery time (s)	Ref.
Pd@ZnO	240	1 ppm	Yes	19/7	This work
Prussian blue film	25	24 ppm	Yes	18/12	[1]
Pt-decorated porous single- crystalline ZnO nanosheets	200	30 ppb	Yes	20/10	[2]
In-doped coral-like SnO ₂ nanostructures	170	0.2 ppm	-	6.7/25.8	[3]
In ₂ O ₃ nanorods and nanoparticles	270	10 ppm	-	-	[4]
Au-deposited porous single- crystalline ZnO nanoplates	260	2 ppm	-	10/14	[5]
Porous ZnO nanoplates	150	_	-	103/22	[6]

Based on different equipment and testing conditions, various gas-sensing materials show their features in chlorobenzene detection. The sensor materials in this work have enhanced response and selectivity compared to controlled ZnO sample, which also have acceptable chlorobenzene-sensing performance compared to results reported in the literature.

References:

- [1] T. X. Fu, Analytical and Bioanalytical Chemistry, 2011, 401, 1167.
- [2] C. P. Gu, H. H. Huang, J. R. Huang, Z. Jin, H. X. Zheng, N. Liu, M. Q. Li, J. H. Liu and F. L. Meng, *Sensors and Actuators A*, 2016, **252**, 96.
- [3] Y. T. Wan, J. Y. Liu, W. Li, F. L. Meng, Z. Jin, X. Y. Yu, X. J. Huang and J. H. Liu, *Nanotechnology*, 2011, **22**, 315501.
- [4] Y. J. Tang and J. M. Ma, *RSC Advances*, 2014, **4**, 25692.
- [5] X. Han, Y. Sun, Z. Y. Feng, G. C. Zhang, Z. C. Chen and J. H. Zhan, *RSC Advances*, 2016, **6**, 37750.
- [6] Z. H. Jing and J. H. Zhan, Advanced Materials, 2008, 20, 4547.

This journal is © The Royal Society of Chemistry 20xx