Supplementary Information

Theoretical investigations of a new two-dimensional semiconducting boroncarbon-nitrogen structure

Yihua Lu,^a Xi Zhu*^a and Min Wang*^b

^aShenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), 14-15F, Tower G2, Xinghe World, Rd Yabao, Longgang District, Shenzhen, Guangdong 518172, China. E-mail:zhuxi@cuhk.edu.cn ^bChongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, China. E-mail: minwang@swu.edu.cn

Fig. S1 Convergence test based on different cutoff energies (450, 500 and 550 eV) and k-point grids ($4 \times 8 \times 1$, $5 \times 9 \times 1$ and $6 \times 10 \times 1$).

Compared with two experimental synthesized BCN structures (denoted as BCN_v1 and BCN_v3) [*ACS Nano*, 2017, **11**, 2486-2493.], oC-B₁₂C₁₂N₁₂ has a higher energy, as shown in Fig. S2. The energy difference between BCN_v3 and oC-B₁₂C₁₂N₁₂ is 0.4 eV/atom.

Fig. S2 Total energies of different BCN structures as a function of area ratio.