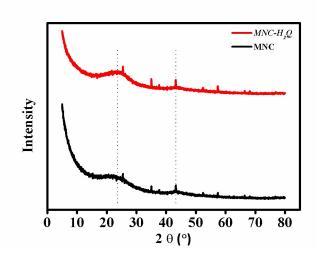
Electronic Supplementary Information

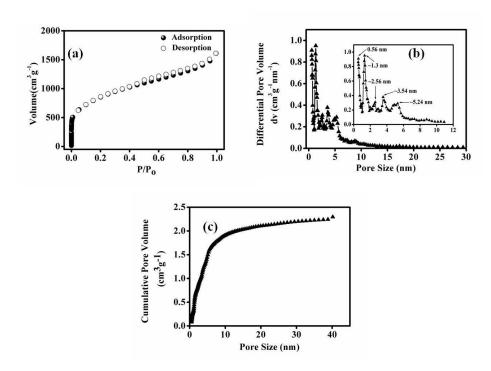
Unravelling the Role of Temperature in a Redox Supercapacitor Composed of Multifarious Nanoporous Carbon@Hydroquinone

Aditi Barua and Amit Paul


Department of Chemistry, Indian Institute of Science Education and Research

Bhopal

E-mail: apaul@iiserb.ac.in


Figure/Table	Content	Page No.		
Figure S1	PXRD patterns of <i>MNC</i> and	S2		
	MNC-H ₂ Q			
Figure S2	BET analysis of MNC	S2		
Figures S3 and S4	TGA and DSC curve of	S3		
	MNC-H ₂ Q			
Figure S5	Cyclic Voltammetry plots of	S4		
	MNC , H_2Q and MNC - H_2Q			
Figure S6	CVs overlays of MNC-H ₂ Q	S4		
	during Cyclic test at 20 and			
	50 °C			
Table S1	Specific Capacitance values	S5		
	of MNC			
Figure S7	Cyclic Voltammetry plots	S5-S6		
	of $MNC-H_2Q$ at different			
	temperatures			
Table S2	Specific Capacitance values	S6		
	of $MNC-H_2Q$ at different			
	current densities and			
	temperatures			

Powder X-Ray Diffraction (PXRD) Results of MNC and MNC-H₂Q

Figure S1: PXRD patterns of MNC and $MNC-H_2Q$. Spikes in the spectra were presumably due to slight metal impurity in the MNC.

Brunauer-Emmett-Teller (BET) Analysis of MNC

Figure S2: Characterizations of MNC using BET. (a) N_2 adsorption/desorption isotherms, (b) Pore size distribution and (c) Cumulative pore volume.

Thermogravimetric Analysis (TGA) curve of MNC-H₂Q

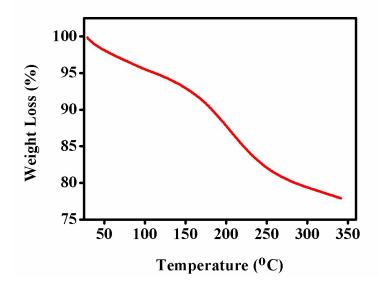


Figure S3: TGA curve of MNC-H₂Q.

Differential scanning calorimetry (DSC) curve of MNC-H₂Q

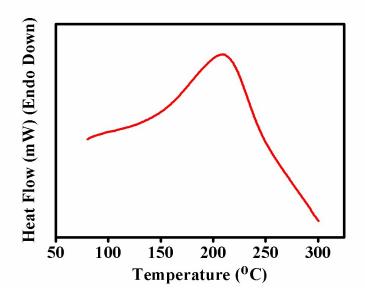
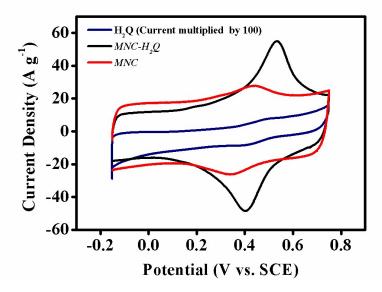
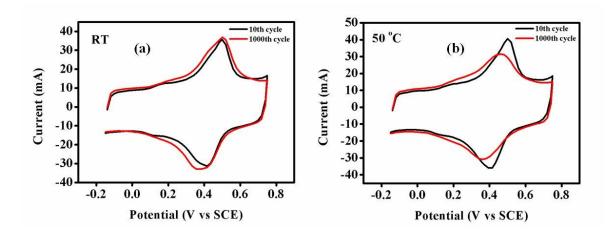
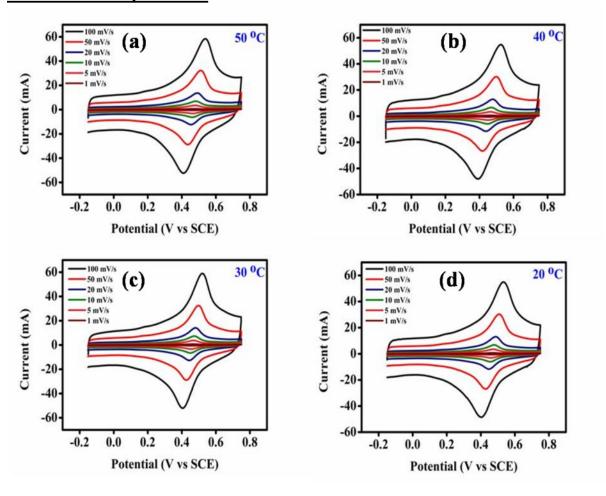




Figure S4: DSC curve of MNC-H₂Q.

Cyclic voltammetry (CV) overlays of MNC, H₂Q and MNC-H₂Q in three electrodes system

Figure S5: Overlay of CVs of *MNC*, H_2Q and $MNC-H_2Q$ at 100 mV s⁻¹. Current for H_2Q has been multiplied by 100 for better visibility.



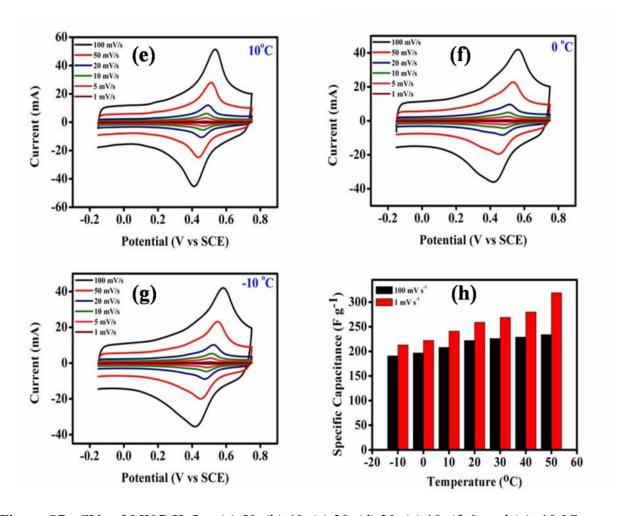

Figure S6. CV overlays of $MNC-H_2Q$ during cyclic tests of the 10th and 1000th cycles at (a) 20 °C and at (b) 50°C. (Scan rate100 mV s⁻¹).

Table S1: Specific Capacitances of *MNC* at different scan rates.

Scan Rate (mV s ⁻¹)	Specific Capacitance (F g-1)		
100	199		
50	206		
20	214		
10	220		
5	226		
1	248		

Cyclic voltammetry (CV) overlays of MNC-H₂Q in three electrodes system at different temperatures

Figure S7 : CVs of *MNC-H₂Q* at (a) 50, (b) 40, (c) 30, (d) 20, (e) 10, (f) 0, and (g) -10 °C. (h). Variation of specific capacitance values at different temperatures at 100 and 1 mV s⁻¹.

Table S2: Specific Capacitances of $MNC-H_2Q$ at different current densities and temperatures

		Specific Capacitance (F g ⁻¹)							
\mathbf{g}^{-1}		-10 °C	0 °C	10 °C	20 °C	30 °C	40 °C	50 °C	
Current Density (Ag ⁻¹)	10	192	195	197	218	220	226	229	
	5	195	198	200	226	230	233	237	
	2	202	206	212	234	241	248	254	
Curr	1.5	204	212	215	238	248	260	264	
	1	205	220	235	256	265	275	295	