Supplementary Information

We developed a web application that enables the user to calculate and fine-tune the model parameters in an interactive and visual fashion. Web application is accessible through the following link: http://ltpo2.fri1.uni-lj.si/dna/

				DNA	Folding		
DSC da	ta Spectroscopic da	ata Parameters / Optimiz	ation / Visualiza	tion Optimi	zation parameter		
Upload	datasets					Visualization of datasets	
#	$c(\mathrm{K^+}) \; \mathrm{[mM]}$	$c((CH_2OH)_2)$ [M]	T [K]			4	
		o((on2on)2) [n]	lower	upper		3	
1	13.0	0.0	294.0	340.0	× 🛷		
2	57.0	0.0	308.0	357.0	× Ø		
3	110.0	0.0	310.0	362.0	× 4)	2 V (V (
4	13.0	3.0	306.0	351.0	× Ø	0	
	ataset(s) Save						

Fig. S1 User interface for the input of DSC data. The DSC curves are plotted in real time.

				DNA	Folding	1				
DSC data	Spectroscopic da	ata Parameters / Optimiz	ation / Visualiza	tion Optimi	zation parameter	rs				
Upload d	atasets					Visualization of	f datasets			
#	$c({ m K}^+)~[{ m mM}]$	$c((CH_2OH)_2) [M]$	$T [\mathrm{K}]$			1.25				
r			lower	upper		1			-	-
1	13.0	0.0	294.0	340.0	× 🖘	0.75			11	
2	57.0	0.0	308.0	357.0	× 🛷	0.5			<i>.</i>	
3	110.0	0.0	310.0	369.0	× 🖘	0.25		113	(
4	13.0	3.0	306.0	357.0	× 🚸			and the second s		
	aset(s) Save									

Fig. S2 User interface for the input of normalized CD melting curves. The normalized CD melting curves are plotted in real time.

				\ Ealdir	20		
			DINA	A Foldir	ig		
OSC data	Spectrosc	opic data	Parameters /	Optimization /	Visualization	Optimizat	ion parameters
Browse							
Upload							
Opioad							
	$\mathbf{F} \to \mathbf{I}$		$\mathrm{I} \to \mathrm{U}$		$\mathbf{F} \to \mathbf{U}$		
$\Delta G^o_{ij(T_0)}$	4.19		5.67		9.86		$\rm kcal\; mol^{-1}$
	±0.057	3.1 D	±0.07	6.2 D			
$\Delta H^o_{ij(T_0)}$	36.84		7.75		44.59		$\rm kcal\; mol^{-1}$
	±0.76	19.3 D	±0.73	27.4 D			
$\Delta C^o_{P,ij}$	-204.11		475.90		271.79		$\mathrm{cal} \ \mathrm{mol}^{-1} \ \mathrm{K}^{-1}$
	±12.0	92.8 D	±8.7	297.6 D			
n_{ij}	0.48		1.91		2.38		mol
	±0.0079	0.5 D	±0.011	1.7 D			
m_{ij}	-9.34		-34.21		-43.55		mol
	±0.38	-7.0 D	±0.39	-33.0 D			
f_{ij}	0.61						
	±0.022	0.55 D					
							K

Fig. S3 User interface for the input of the parameters. The parameters can be uploaded from a file or typed/ increased/ decreased manually. The errors are displayed under the parameter values.

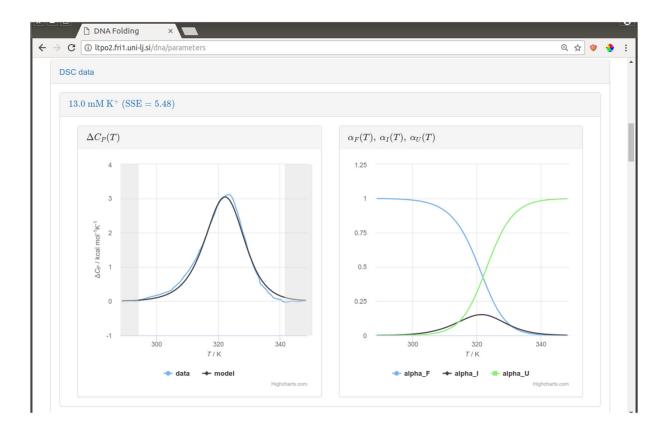


Fig. S4 Comparison of the fitting and experimental curves (left), and speciation diagram under the given conditions.

						P.		
					DNA Fol	ding		
DSC data	Spectr	oscopic data	Paramete	ers / Optimizatio	on / Visualization	Optimization para	meters	
Parameter		Current value Fixed Lower Upper bound bound			Optimization / error e	stimation		
$\Delta G^o_{ij(T_0)}$	$\boldsymbol{F} \to \boldsymbol{I}$	4.19				$ m kcal mol^{-1}$	Number of function evaluations	50
	$\mathbf{I} \to \mathbf{U}$	5.67				$\rm kcal\ mol^{-1}$	Number of bootstrapping iterations	50
$\Delta H^o_{ij(T_0)}$	$\mathbf{F} \to \mathbf{I}$	36.84				$\rm kcal\ mol^{-1}$	These values affect the optimization and error	
	$I \to U$	7.75				$\rm kcal\ mol^{-1}$	opumization and error o	esumation processes.
$\Delta C^o_{P,ij}$	$\boldsymbol{F} \to \boldsymbol{I}$	-204.11				$\mathrm{cal}\mathrm{mol}^{-1}\mathrm{K}^{-1}$		
	$\mathrm{I} \to \mathrm{U}$	475.90				$\mathrm{cal}\mathrm{mol}^{-1}\mathrm{K}^{-1}$		
n_{ij}	$\mathbf{F} \to \mathbf{I}$	0.48				mol		
	$\mathbf{I} \to \mathbf{U}$	1.91				mol		
m_{ij}	$\mathbf{F} \to \mathbf{I}$	-9.34				mol		
	$\mathbf{I} \to \mathbf{U}$	-34.21				mol		
f_{ij}	$F \to I$	0.61						

Fig. S5 User interface for the control of the parameters. The parameters can be fixed or limited by the upper and/or lower values, and the number of bootstrapping iterations can be set.