Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

SUPPORTING INFORMATION

Synthesis of the Pentasaccharide Repeating Unit of the O-antigen from *Enterobacter cloacae* C4115 containing the rare α -D-FucNAc

Aritra Chaudhury and Balaram Mukhopadhyay

Sweet Lab, Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia 741246 INDIA

Table of Contents

No.	Description	Page No.
1	Scheme and Experimental Procedure for the undesired	S-1
	outcome of the glycosylation	
2	Copy of ¹ H NMR spectrum for Compound 4	S-3
3	Copy of ¹³ C NMR spectrum for Compound 4	S-4
4	Copy of ¹ H- ¹ H COSY NMR spectrum for Compound 4	S-5
5	Copy of ¹ H- ¹³ C HSQC NMR spectrum for Compound 4	S-6
6	Copy of ¹ H NMR spectrum for Compound 5	S-7
7	Copy of ¹³ C NMR spectrum for Compound 5	S-8
8	Copy of ¹ H- ¹ H COSY NMR spectrum for Compound 5	S-9
9	Copy of ¹ H- ¹³ C HSQC NMR spectrum for Compound 5	S-10
10	Copy of ¹ H NMR spectrum for Compound 6	S-11
11	Copy of ¹³ C NMR spectrum for Compound 6	S-12
12	Copy of ¹ H coupled ¹³ C NMR spectrum for Compound 6	S-13
13	Copy of ¹ H- ¹ H COSY NMR spectrum for Compound 6	S-14
14	Copy of ¹ H- ¹³ C HSQC NMR spectrum for Compound 6	S-15
15	Copy of ¹ H NMR spectrum for Compound 7	S-16
16	Copy of ¹³ C NMR spectrum for Compound 7	S-17
17	Copy of ¹ H NMR spectrum for Compound 10	S-18
18	Copy of ¹³ C NMR spectrum for Compound 10	S-19
19	Copy of ¹ H- ¹ H COSY NMR spectrum for Compound 10	S-20
20	Copy of ¹ H- ¹³ C HSQC NMR spectrum for Compound 10	S-21
21	Copy of ¹ H NMR spectrum for Compound 11	S-22
22	Copy of ¹³ C NMR spectrum for Compound 11	S-23
23	Copy of ¹ H- ¹ H COSY NMR spectrum for Compound 11	S-24
24	Copy of ¹ H- ¹³ C HSQC NMR spectrum for Compound 11	S-25
25	Copy of ¹ H NMR spectrum for Compound 12	S-26
26	Copy of ¹³ C NMR spectrum for Compound 12	S-27
27	Copy of ¹ H- ¹ H COSY NMR spectrum for Compound 12	S-28
28	Copy of ¹ H- ¹³ C HSQC NMR spectrum for Compound 12	S-29
29	Copy of ¹ H NMR spectrum for Compound 13	S-30
30	Copy of ¹³ C NMR spectrum for Compound 13	S-31
31	Copy of ¹ H- ¹ H COSY NMR spectrum for Compound 13	S-32
32	Copy of ¹ H- ¹³ C HSQC NMR spectrum for Compound 13	S-33
33	Copy of ¹ H NMR spectrum for Compound 15	S-34
34	Copy of ¹³ C NMR spectrum for Compound 15	S-35
35	Copy of ¹ H- ¹ H COSY NMR spectrum for Compound 15	S-36
36	Copy of ¹ H- ¹³ C HSQC NMR spectrum for Compound 15	S-37
37	Copy of ¹ H NMR spectrum for Compound 16	S-38
38	Copy of ¹³ C NMR spectrum for Compound 16	S-39
39	Copy of ¹ H- ¹ H COSY NMR spectrum for Compound 16	S-40
40	Copy of ¹ H- ¹³ C HSQC NMR spectrum for Compound 16	S-41
41	Copy of ¹ H NMR spectrum for Compound 17	S-42

42	Copy of ¹³ C NMR spectrum for Compound 17	S-43
43	Copy of ¹ H- ¹ H COSY NMR spectrum for Compound 17	S-44
44	Copy of ¹ H- ¹³ C HSQC NMR spectrum for Compound 17	S-45
45	Copy of ¹ H NMR spectrum for Compound 19	S-46
46	Copy of ¹³ C NMR spectrum for Compound 19	S-47
47	Copy of ¹ H- ¹ H COSY NMR spectrum for Compound 19	S-48
48	Copy of ¹ H- ¹³ C HSQC NMR spectrum for Compound 19	S-49
49	Copy of ¹ H NMR spectrum for Compound 20	S-50
50	Copy of ¹³ C NMR spectrum for Compound 20	S-51
51	Copy of ¹ H- ¹ H COSY NMR spectrum for Compound 20	S-52
52	Copy of ¹ H- ¹³ C HSQC NMR spectrum for Compound 20	S-53
53	Copy of ¹ H NMR spectrum for Compound 21	S-54
54	Copy of ¹³ C NMR spectrum for Compound 21	S-55
55	Copy of ¹ H- ¹ H COSY NMR spectrum for Compound 21	S-56
56	Copy of ¹ H- ¹³ C HSQC NMR spectrum for Compound 21	S-57
57	Copy of ¹ H NMR spectrum for Compound 1	S-58
58	Copy of ¹³ C NMR spectrum for Compound 1	S-59
59	Copy of ¹ H- ¹ H COSY NMR spectrum for Compound 1	S-60
60	Copy of ¹ H- ¹³ C HSQC NMR spectrum for Compound 1	S-61
61	Copy of the HRMS spectrum for Compound 1	S-62
62	Copy of the HRMS spectrum for Compound 7	S-63

Undesired outcome from the glycosylation of donor 16 with acceptor 13:

Scheme S1: Preparation of D-galactosyl donor 23 and attempted disaccharide synthesis

Phenyl 6-O-acetyl-3,4-O-isopropylidene-2-O-(2'-methyl)naphthyl-1-thio-β-D-galactopyranoside [16]

Compound **14** (2.2 g, 7.05 mmol) was dissolved in CH_2CI_2 (40 mL) along with NapBr (2.18 g, 9.87 mmol) and TBAB (2.5 g, 7.75 mmol). After stirring the reaction mixture for 10 minutes NaOH (10% aq., 10 mL) was added and the reaction mixture was allowed to stir overnight. After the completion of the reaction it was diluted with CH_2CI_2 (20 mL) and washed with water (100 mL). The organic layer was collected and dried over anhydrous $Na_2SO_4(s)$. The solvent was removed under reduced pressure to give the crude product which was purified by column chromatography (1:1 *n*-Hexane/EtOAc) to give the mono-alkylated product **15** ($R_{f=}0.5$ 1:1 *n*-Hexane/EtOAc).

¹H NMR (CDCl₃, 500 MHz) δ: 7.87-7.26 (m, 12H, Ar*H*), 4.86 (d, 1H, *J*=11.5Hz, NapC*H*₂), 4.69 (d, 1H, *J*=11.5 Hz, NapC*H*₂), 4.33 (d, 1H, *J*=9.5 Hz, H-1), 4.33 (t, 3H, *J*= 6.0 Hz, H-3), 4.19 (d, 1H, *J*= 4.0 Hz, H-4), 3.98-3.94 (m, 1H, H-6a), 3.82-3.76 (m, 2H, H-6b, H-5), 3.62-3.59 (m, 1H, H-2), 1.40 (s, 3H, CH₃), 1.39 (s, 3H, CH₃).

¹³C NMR (CDCl₃, 125 MHz) δ: 135.2, 133.4, 133.2, 133.1, 129.0, 128.9, 128.0, 127.9, 127.6, 127.5, 127.0, 126.3, 126.0, 125.9, 110.4 (-*C*Me₂), 85.9 (C-1), 79.8 (C-3), 78.1 (C-2), 76.7 (C-5), 73.9 (C-4), 73.4 (Ar*C*H₂), 62.5 (C-6), 27.7, 26.3 (2×*C*H₃).

HRMS calculated for C₂₆H₂₈O₅SNa (M+Na)⁺: 475.1555, found: 475.1551.

This product **15** was dissolved in pyridine (15 mL) and acetic anhydride (2 mL) was added. The reaction mixture was stirred overnight. After the completion of the reaction the solvent was concentrated under reduced pressure and the crude residue was dissolved in CH_2Cl_2 (30 mL) and washed with ice-cold HCl (5% aq., 100 mL). The organic layer was collected and dried over anhydrous $Na_2SO_4(s)$. The solvent was removed under reduced pressure to give the crude product which was purified by column chromatography (3.5:1 *n*-Hexane/EtOAc) to give the product **16** ($R_{f=}0.4$ 3:1 *n*-Hexane/EtOAc) (2.61 g, 75% over 2 steps).

¹H NMR (CDCl₃, 500 MHz) δ: 7.85-7.26 (m, 12H, Ar*H*), 4.99 (d, 1H, *J*=11.5Hz, NapC*H*₂), 4.86 (d, 1H, *J*=11.5 Hz, NapC*H*₂), 4.66 (d, 1H, *J*=9.0 Hz, H-1), 4.35-4.30 (m, 3H, H-6a, H-6b, H-3), 4.19 (d, 1H, *J*=5.0 Hz, H-4), 3.95 (m, 1H, H-5), 3.60 (m, 1H, H-2), 2.06 (s, 3H, C*H*₃), 1.39 (s, 3H, C*H*₃), 1.35 (s, 3H, C*H*₃).

¹³C NMR (CDCl₃, 125 MHz) δ: 170.7 (*C*0), 135.1, 133.7, 133.2, 133.1, 132.0, 128.9, 128.7, 128.1, 127.9, 127.6, 127.4, 127.1, 126.3, 126.0, 125.9, 110.4 (O_2CMe_2), 86.1 (C-1), 79.5 (C-3), 78.0 (C-2), 74.1 (C-5), 73.5 (ArCH₂), 73.4 (C-4), 63.7 (C-6), 27.6, 26.3 (2×CH₃), 20.8 (CH₃).

HRMS calculated for C₂₈H₃₀O₆SNa (M+Na)⁺: 517.1661, found: 517.1654.

((3aR,3bS,11bR,13R,13aS)-2,2-dimethyl-3a,3b,5,11b,13,13a-hexahydro-[1,3]dioxolo[4',5':4,5]pyrano[3,2 c]benzo[g]isochromen-13-yl)methyl acetate [17]

Donor **16** (176 mg, 0.36 mmol) and acceptor **13** (100 mg, 0.3 mmol) were dissolved in CH_2CI_2 (10 mL) and stirred with 4Å MS (1g) and NIS (105 mg, 0.45 mmol) for 15 minutes under N₂ atmosphere. Thereafter the temperature was lowered to -40 °C and TMSOTF (0.012 mL, 0.06 mmol) was added and the reaction was allowed to continue for 1 hour. TLC (3:1 *n*-Hexane/EtOAc) at this point showed the glycosyl donor **21** to be completely consumed with the concomitant generation of a new spot located higher in the TLC (R_f = 0.5 3:1 *n*-Hexane/EtOAc) than the donor itself. The MS was filtered out and the filtrate was washed successively with NaHCO₃ aq. (50 mL), Na₂S₂O₃ (50 mL) and brine (50 mL). The organic layer was separated and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure to give the crude residue which was purified by column chromatography (3:1 *n*-Hexane/EtOAc) to give the undesired product **17** (100 mg) in 73% yield.

¹H NMR (CDCl₃, 500 MHz) δ : 8.33 (d, 2H, *J*= 8.3 Hz, Ar*H*), 7.82 (d, 1H, *J*= 8.0 Hz, Ar*H*), 7.78 (d, 1H, *J*= 8.3 Hz, Ar*H*), 7.58 (t, 1H, *J*= 8.0 Hz, Ar*H*), 7.50 (t, 1H, *J*= 8.0 Hz, Ar*H*), 7.10 (d, 1H, *J*= 8.3 Hz, Ar*H*), 5.39 (d, 1H, *J*= 3.0 Hz, H-1), 4.95 (d, 1H, *J*= 15.0 Hz, ArCH₂), 4.82 (d, 1H, *J*=15.0 Hz, ArCH₂), 4.70 (dd, 1H, *J*= 2.7 Hz, 7.5 Hz, H-3), 4.39 (d, 1H, *J*= 7.7 Hz, H-4), 4.28-4.22 (m, 2H, H-5 H-6a), 4.18-4.17 (m, 1H, H-2), 4.09 (dd, 1H, *J*= 5.2 Hz, 10.3 Hz, H-6b), 1.71 (s, 3H, CH₃), 1.68 (s, 3H, CH₃), 1.47 (s, 3H, CH₃).

¹³C NMR (CDCl₃, 125 MHz) δ: 170.6 (*C*0), 132.9, 132.7, 132.3, 128.8, 128.2, 127.5, 126.6, 125.6, 124.9, 121.8 (Ar*C*), 110.4 (-*C*Me₂), 73.2 (C-3), 72.7 (C-4), 72.2 (C-2), 68.1 (Nap*C*H₂), 67.7 (C-5), 63.2 (C-1), 63.1 (C-6), 26.5, 25.1 (2×*C*H₃), 20.5 (CO*C*H₃).

HRMS calculated for C₂₂H₂₄O₆Na (M+Na)⁺: 407.1471, found: 407.1472.

S-4

07.1 07.1
- Processing parameters 32768 125.8106099 MHz 0
<pre>==== CHANNEL f2 ======== 500.3420014 MHz 2 1H 2 1H 2 0.3420014 MHz 2 0.3420014 MHz 2 0.47852001 W 12 0.24068999 W</pre>
===== CHANNEL f1 ========= 1 125.8294646 MHz 1 125.8294646 MHz 1 150 usec 1 66.0000000 W
- Acquisition Parameters - Acquisition Parameters - 15.19 15.19 15.19 15.19 15.19 2800 BB/ 2800 297930 65536 VENT 2959.648 Hz 33 43859.648 Hz 33 43859.648 Hz 0.669245 Hz 0.669245 Hz 0.669245 Hz 0.7471104 sec 11.400 usec 300.2 K 2.0000000 sec 0.03000000 sec 1
cent Data Parameters BM-AC-R61 NO 1
X

A Parameters	BM-AC-R125US 590 1 1isition Parameters	2019003 Bruker_default_av500 5 mm PABBO BB/ 290930 65536 65536 65536 18000 18000	73.737.938 Hz 1.1555959 Hz 1.1553763 Hz 203 6.600 usec 6.500 usec 299.5 K 2.0000000 sec 0.03000000 sec	CHANNEL f1 ===================================	CHANNEL f2 ===================================	cessing parameters 32768 125.8156307 MHz 0 1.00 Hz 0 1.40
	NAME EXPNO PROCNO F2 - Acq Date	Date_ Time PROBHD PULPROG TD SOLVENT NS DS	NAC AQ AQ DW DT D11 D11 D11	====== SF01 NUC1 P1 PLW1	SF02 SF02 NUC2 CPDPRG[2 PCPD2 PLW2 PLW13 PLW13	FF2 SH NDW NDW CSSB CB CB CC CC CC CC CC CC CC CC CC CC CC

GROUP BM BM-AC-R125 in CDC13

	umeters 220 48 48 11t_av500 536 536 536 536 536 536	4 4 89 Hz 88 4 Hz 52 50 52 50 0 100 56 0 100 50 0 100 500	336 MHZ 336 MHZ 550 usec 000 W 114 MHZ 114 114 000 usec 000 usec 001 W	eters 68 23 MHz EM 00 Hz 40
BM-AC-R16	isition Para 201905 Bruker_defau 5 mm PABBO 5 mm PABBO 5950 6950 75	37878 0.55775 0.86507 13.2 13.2 6.000000	CHANNEL f1 = 125.82820 1 66.00000 66.00000 66.00000 60.36200 700.36200 812 800.36200 0.478520 0.240689	essing param 321 125.81563 0 125.81563 0 1.
Current D. NAME EXPNO PROCNO	F2 - Acqu Date T1me INSTRUM PROBHD PULPROG TD SOLVENT NS	DS SWH AQ TURES DDW DI D11 TD0 TD0	SFO1 SFO1 NUC1 P1 PLM1 FLM1 SFO2 NUC2 SFO2 NUC2 FCPPRG[2 FLM12 FLM13 FLM13	ST PF2 ST PF0 ST SSF WDW WDW SSB SSB GB GB GB FC

S-59

Display Report

Pentasaccharie Deprotected. Exp: 934.3532 Fr: C39 H61 NNA023 Obs: 934.3532 Fr: C39 H61 NNA023

Analysis Info

 Analysis Name
 D:\Data\User data\2019\SEP\BM-AC-R160-72HREP.d

 Method
 Tune_pos_Mid.m

 Sample Name
 BM-AC-R160-72HREP

 Comment
 BM-AC-R160-72HREP

Acquisition Date 9/24/2019 3:37:12 PM

Operator	ISER	Kaiyani	
Instrument r	maXis	impact	8282001.00127

BM-AC-R160-72HREP.d

Bruker Compass DataAnalysis 4.1 printed: 9/24/2019 3:41:01 PM by: IISER Kalyani Page 1 of 1

		Displa	ay Report		
nalysis Info nalysis Name	D:\Data\User data\	2019/DEC/BM-AC-TRIOH d		Acquisition Date 13	2/24/2019 12:54:04 PM
ethod ample Name omment	Tune_pos_Mid.m BM-AC-TRIOH pyrrrole -COOH ar	nd -COOET	•	Operator IISER Ka Instrument maXis im	yani pact 8282001.00127
cquisition Para r ource Type ocus can Begin can End	neter ESI Active 50 m/z 3000 m/z	lon Polarity Set Capillary Set End Plate Offset Set Charging Voltage Set Corona	Positive 3400 V -500 V 2000 V 0 nA	Set Nebulizer Set Dry Heater Set Dry Gas Set Dry Cas Set APCI Heat	0.4 Bar 200 °C 4.0 l/min Source er 0 °C
Intens. x105_		<			
4.0-					
3.8-	4				
3.6-	~~~				
	AII MS	0,4	0.6	0.8	1.0 Time [r
Intens x10 ⁵		1061,4650			+MS, 0.1-1.1min #4 C ₆₂ H ₇₀ O ₄₄ , M+nNa, 1061.4 C ₆₂ H ₇₀ O ₄₄ , M+nNH4, 1056.5
,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-			Ce2H70O14, MHnK, 1077.4
ו•••	1	056.5097			
· · · · · c			1077.4402		
1040	1050	1060 1070	1080	1090	1100
M-AC-TRIOH.d					
ruker Compass Data	aAnalysis 4.1	printed: 12/24/2019.3	25-04 PM	hur IISER Kalvani	Dage 1 of 1

S-63