Supporting information

An investigation of the metabolic activity, isozyme contribution, species differences and potential drug-drug interactions of PI-103, and the identification of efflux transporters for PI-103-*O*-glucuronide in HeLa1A9 cells

Li Gao, ab Zifei Qin, *ab Beibei Zhang, ab Zhao Yin, ab Xiaojian Zhang, ab and Jing Yang, *ab

^a Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China;

^b Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China;

* Corresponding authors

E-mail: qzf1989@163.com (Zifei Qin); jingyang_0101@163.com (Jing Yang); Tel.: +86-371-66913423;

Figure legends

Figure S1 Kinetic profiles for metabolic activities of PI-103 in HLM and HIM. (A) Mono-oxidation of PI-103 in HLM; (B) Mono-oxidation of PI-103 in HIM; (C) Mono-glucuronidation of PI-103 in HLM; (D) Mono-glucuronidation of PI-103 in HIM; In each panel, the insert figure showed the corresponding Eadie-Hofstee plot. All experiments were performed in triplicate.

Figure S2 Metabolic rates of PI-103 by expressed CYP and UGT enzymes at 1 and 10 μ **M**. (A) Metabolic rates for mono-oxidation of PI-103 by twelve expressed CYP isoforms; (B) Metabolic rates for mono-glucuronidation of PI-103 by thirteen expressed UGT isoforms; All experiments were performed in triplicate. N.D.: not detected; N.A.: due to the concentration under the limit of quantification, it was unavailable to determine the kinetic parameters.

Figure S3 Kinetic profiles for mono-oxidation of PI-103 in five expressed CYP enzymes. (A) Kinetic profiles by CYP1A1; (B) Kinetic profiles by CYP1A2; (C) Kinetic profiles by CYP1B1; (D) Kinetic profiles by CYP3A4; (E) Kinetic profiles by CYP3A5; In each panel, the insert figure showed the corresponding Eadie-Hofstee plot. All experiments were performed in triplicate.

Figure S4 Kinetic profiles for mono-glucuronidation of PI-103 in six expressed UGT enzymes. (A) Kinetic profiles by UGT1A1; (B) Kinetic profiles by UGT1A3; (C) Kinetic profiles by UGT1A7; (D) Kinetic profiles by UGT1A8; (E) Kinetic profiles by UGT1A9; (E) Kinetic profiles by UGT1A10; In each panel, the insert figure showed the corresponding Eadie-Hofstee plot. All experiments were performed in triplicate.

Figure S5 Inhibitory effects of several inhibitors on the metabolic activities of PI-103 in HLM. (A) Inhibitory effects on mono-oxidation of PI-103; (B) Inhibitory effects on mono-glucuronidation of PI-103; All experiments were performed in triplicate. (*, # Compared with the control values of M1 and M2 in HLM, respectively. *, # p < 0.05, **, ## p < 0.01, ***, ### p < 0.001)

Figure S6 Correlation analysis for the metabolic activities of PI-103 in a bank of individual HLM (n = 12). (A) Correlation analysis between PI-103-oxidation and phenacetin-N-deacetylation; (B) Correlation analysis between PI-103-oxidation and nifedipine-oxidation; (C) Correlation analysis between PI-103-*O*-glucuronidation and β -estradiol-3-O-glucuronidation; (D) Correlation analysis between PI-103-*O*-glucuronidation and propofol-O-glucuronidation; All experiments were performed in triplicate. (* p < 0.05, **p < 0.01, ***p < 0.001).

Figure S7 Kinetic profiles for mono-oxidation of PI-103 by various types of microsomes. (A) Kinetic profiles by dog liver microsomes (DLM); (B) Kinetic profiles by mice liver microsomes (MLM); (C) Kinetic profiles by rat liver microsomes (RLM); (D) Kinetic profiles by mini-pig liver microsomes (MpLM); In each panel, the insert figure showed the corresponding Eadie-Hofstee plot. All experiments were performed in triplicate.

Figure S8 Kinetic profiles for mono-glucuronidation of PI-103 by various types of microsomes. (A) Kinetic profiles by dog liver microsomes (DLM); (B) Kinetic profiles by mice liver microsomes (MLM); (C) Kinetic profiles by rat liver microsomes (RLM); (D) Kinetic profiles by mini-pig liver microsomes (MpLM); In each panel, the insert figure showed the corresponding Eadie-Hofstee plot. All experiments were performed in triplicate.

Figure S9 UGT1A9-mediated PI-103-O-glucuronidation in HeLa1A9 cells. (A) Excreted PI-103-O-glucuronide in extracellular solution at two concentrations of propofol (2.5 and 5 μ M); (B) Excreted rates of PI-103-O-glucuronide at different concentrations (2.5 and 5 μ M); All experiments were performed in triplicate. Data were presented as mean ± SD. * p < 0.05, ** p < 0.01 or *** p < 0.001 compared with that of PI-103 (2.5 μ M).

Figure S10 Concentration-dependent inhibition evaluation of PI-103 towards several expressed CYP enzymes. (A) Concentration-dependent plot towards CYP1A1mediated ethoxyresorufin-deethylation; (B) Concentration-dependent plot towards CYP1A2-mediated phenacetin-*N*-deacetylation; (C) Concentration-dependent plot towards CYP2B6-mediated bupropion-hydroxylation; (D) Concentration-dependent plot towards CYP2C9-mediated tolbutamide-4-hydroxylation; (E) Concentration-dependent plot towards CYP2C19-mediated mephenytoin-4-hydroxylation; (F) Concentration-dependent plot towards CYP2E1-mediated chlorzoxazone-6hydroxylation; All experiments were performed in triplicate. Data were presented as mean ± SD.

Figure S11 Concentration-dependent inhibition evaluation of PI-103 against several expressed UGT enzymes. (A) Concentration-dependent plot against UGT1A3mediated 4-MU-glucuronidation; (B) Concentration-dependent plot against UGT1A6mediated 4-MU-glucuronidation; (C) Concentration-dependent plot against UGT1A7mediated 4-MU-glucuronidation; (D) Concentration-dependent plot against UGT1A9mediated propofol-glucuronidation; (E) Concentration-dependent plot against UGT1A9mediated propofol-glucuronidation; (E) Concentration-dependent plot against UGT2B7-mediated 4-MU glucuronidation; All experiments were performed in triplicate. Data were presented as mean ± SD.

Table list

Table S1 Detailed UHPLC and MRM conditions information for quantification of the

 metabolites of specific substrates

 Table S2
 Selection of inhibition type of PI-103 towards six CYPs and five UGTs

 isozymes

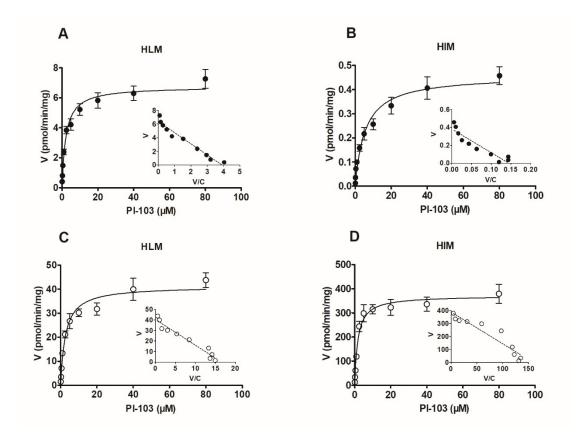


Figure S1

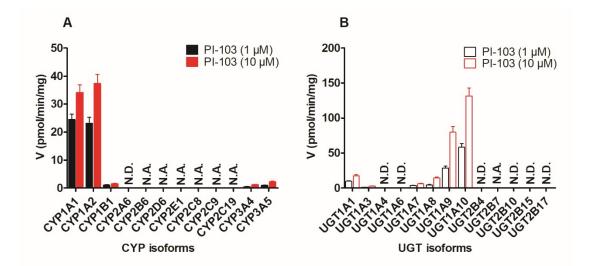


Figure S2

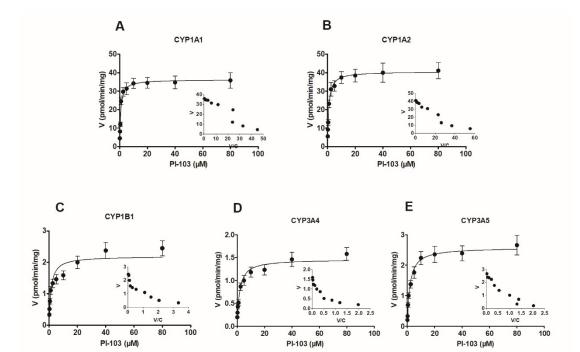


Figure S3

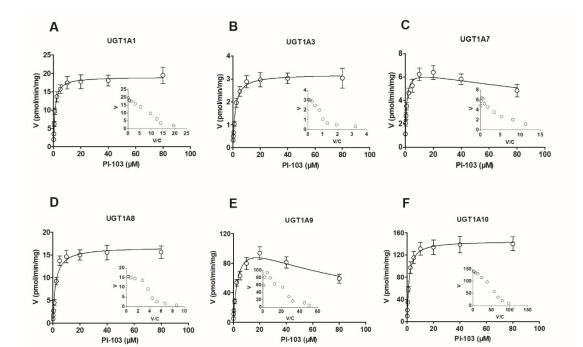


Figure S4

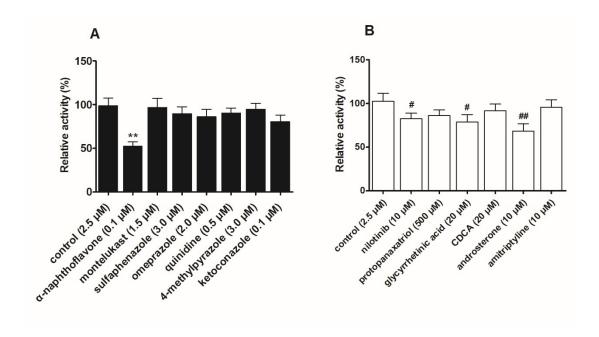


Figure S5

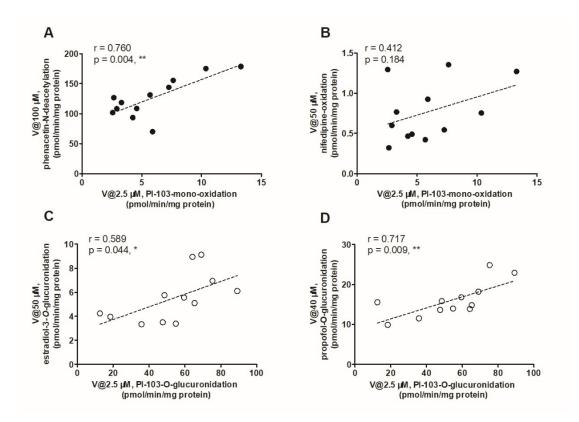


Figure S6

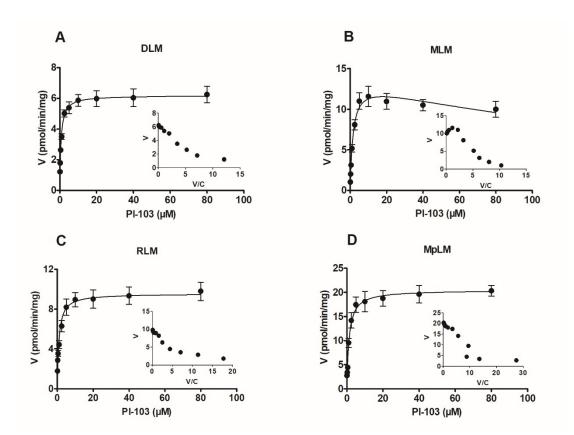


Figure S7

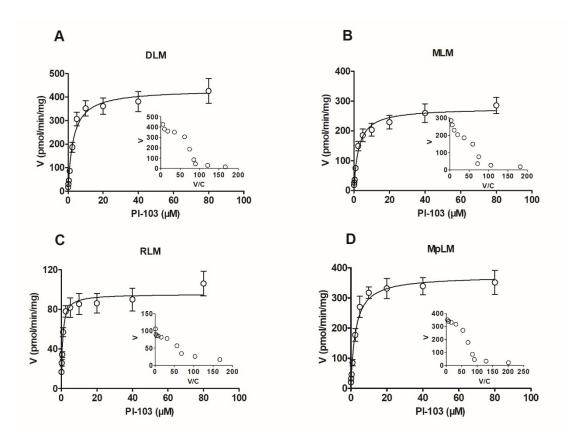


Figure S8

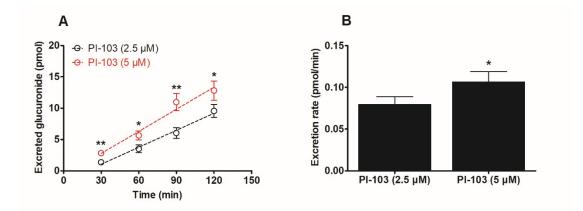


Figure S9

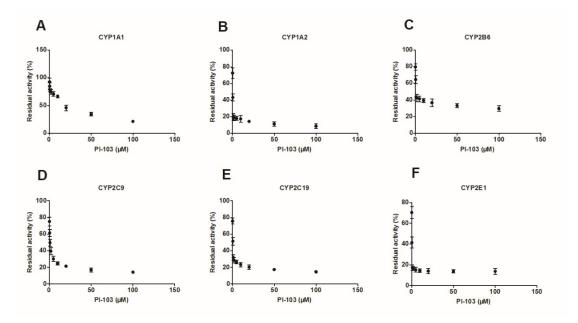


Figure S10

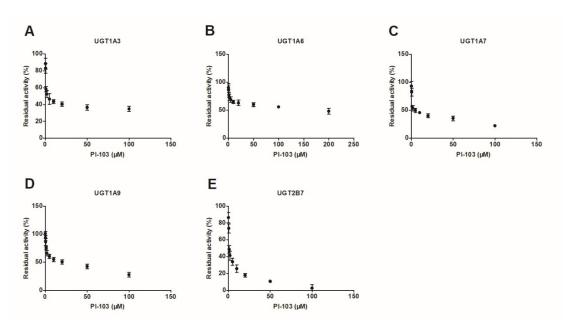


Figure S11

Enzymes	Substrates	Metabolites	UHPLC conditions	t _R (min)	MRM Conditions			
					Parent	Parent Daughters		Collision
					(m/z)	(m/z)	(V)	(V)
Human CY	P enzymes							
CYP1A1	ethoxyresorufin	resorufin	0-0.4 min, 10%B;	1.45 (+)	214.050	186.020	60	25
CYP1A2	phenacetin	paracetamol	0.4-1.4 min, 10%-	0.91 (+)	152.071	110.050	50	15
CYP2A6	coumarin	7-hydroxycoumarin	95%B; 1.4-1.6 min,	1.42 (+)	163.040	107.030	40	20
CYP2B6	bupropion	hydroxybupropion	95%B; 1.6-1.8 min,	1.37 (+)	256.110	238.100	20	10
CYP2C8	paclitaxel	6α-hydroxy-paclitaxel	95%-10%B; 1.8-2.0	1.75 (+)	870.334	105.200	30	45
CYP2C9	tolbutamide	4-hydroxytolbutamide	min, 10%B;	1.50 (+)	287.107	89.300	30	40
CYP2C19	S-mephenytoin	4-hydroxymephenytoin		1.41 (+)	235.108	150.100	40	20
CYP2E1	chlorzoxazone	6-hydroxychlorzoxazone	0.3 ml/min	1.36 (-)	183.980	119.900	40	20
CYP3A4	nifedipine	oxidized nifedipine	35 °C	1.76 (+)	345.109	284.100	60	30
CYP3A5	nifedipine	oxidized nifedipine		1.76 (+)	345.109	284.100	60	30
Human UG	iT enzymes							
UGT1A1	β-estradiol	β-estradiol-3-glucuronide	0-0.4 min, 10%B;	1.48 (-)	447.202	113.200	50	20
UGT1A3	4-MU	4-MU-glucuronide	0.4-1.4 min, 10%-	1.30 (-)	351.072	175.050	30	25
UGT1A4	TFP	TFP-N-glucuronide	95%B; 1.4-1.6 min,	1.58 (+)	584.204	408.210	50	25
UGT1A6	4-MU	4-MU-glucuronide	95%B; 1.6-1.8 min,	1.30 (-)	351.072	175.050	30	25
UGT1A7	4-MU	4-MU-glucuronide	95%-10%B; 1.8-2.0	1.30 (-)	351.072	175.050	30	25
UGT1A8	4-MU	4-MU-glucuronide	min, 10%B;	1.30 (-)	351.072	175.050	30	25
UGT1A9	propofol	propofol-O-glucuronide		1.60 (-)	353.160	177.100	50	25
UGT1A10	4-MU	4-MU-glucuronide	0.3 ml/min	1.30 (-)	351.072	175.050	30	25
UGT2B4	4-MU	4-MU-glucuronide	35 °C	1.30 (-)	351.072	175.050	30	25
UGT2B7	4-MU	4-MU-glucuronide		1.30 (-)	351.072	175.050	30	25
UGT2B10	4-MU	4-MU-glucuronide		1.30 (-)	351.072	175.050	30	25
UGT2B15	4-MU	4-MU-glucuronide		1.30 (-)	351.072	175.050	30	25

Table S1 Detailed UHP LC and MRM conditions information for quantification of the metabolites of specific substrates

UGT2B17 4-MU 4-MU-glucuronide 1.30 (-) 351.072 175.050 30 25
--

Note: 4-MU, 4-methylumbelliferone; TFP, trifluoperazine; (+) and (-) means ESI+ and ESI-, respectively.

Isozymes	Substrate	Type of inhibition	K _i (μM)	α	Goodness of fit (R ²)	AIC	SC	Selection
UGT1A3	4-MU	Competitive	0.94±0.27		0.9368	-164.81	-162.49	
		Noncompetitive	5.22±0.48		0.9689	-176.16	-173.84	
		Mixed-type	2.58±0.84	2.97±1.61	0.9757	-178.09	-175.00	v
UGT1A7	4-MU	Competitive	1.15±0.34		0.9242	-143.50	-141.18	
		Noncompetitive	5.64±0.60		0.9611	-154.18	-151.86	v
		Mixed-type	3.32±1.37	2.28±1.52	0.9648	-153.76	-150.67	
UGT2B7	4-MU	Competitive	0.75±0.13		0.9691	-226.97	-224.66	
		Noncompetitive	1.35±0.15		0.9721	-228.62	-226.30	v
		Mixed-type	1.13±0.43	1.66±1.92	0.9726	-226.86	-223.77	
CYP1A2	Phenacetin	Competitive	0.08±0.02		0.9288	-102.20	-99.88	
		Noncompetitive	0.38±0.03		0.9779	-120.90	-118.58	v
		Mixed-type	0.26±0.10	1.70±0.93	0.9793	-120.01	-116.61	
CYP2B6	Bupropion	Competitive	0.40±0.08		0.9594	-217.86	-215.55	
		Noncompetitive	1.44±0.17		0.9567	-216.81	-214.49	
		Mixed-type	0.64±0.22	5.09±4.48	0.9673	-219.32	-216.23	v
CYP2C9	Tolbutamide	Competitive	0.24±0.05		0.9640	-224.83	-222.51	
		Noncompetitive	0.96±0.06		0.9859	-239.83	-237.51	
		Mixed-type	0.56±0.12	2.45±0.94	0.9901	-243.41	-240.32	v
CYP2C19	Mephenytoin	Competitive	0.11±0.04		0.8967	-143.75	-141.44	
		Noncompetitive	0.53±0.03		0.9848	-174.46	-172.14	v
		Mixed-type	0.68±0.27	0.71±0.37	0.9854	-173.05	-169.96	
CYP2E1	Chlorzoxazon	Competitive	0.06±0.01		0.9549	-142.25	-139.94	
	е							
		Noncompetitive	0.25±0.01		0.9949	-177.37	-175.05	v
		Mixed-type	0.21±0.04	1.33±0.37	0.9953	-176.64	-173.55	

Table S2 Selection of inhibition type of PI-103 towards six CYPs and five UGTs isozymes

Note: 4-MU, 4-methylumbelliferone.