Cyclometalation of Lanthanum(III) based MOF for Catalytic Hydrogenation of Carbon Dioxide to Formate:

Piwai Tshuma,^{ab} Banothile Makhubela^b Lars Ohmstrom^c Susan A Bourne^d and Gift Mehlana^{a*}

^aMidlands State University, Department of Chemical Technology, Faculty of Science and Technology, Private Bag 9055, Senga Road, Gweru, Zimbabwe

^bUniversity of Johannesburg, Department of Chemistry, Faculty of Science, Kingsway Campus: C2 Lab 328, Auckland Park, 2006, South Africa

°Chalmers University of Technology, Department of Chemistry and Chemical Engineering

Physical Chemistry room 9029, Göteborg, Sweden

^dUniversity of Cape Town, Department of Chemistry, Faculty of Science, PD Hahn Building 7701 Rondebosch, Cape Town, South Africa

E-mail Address: mehlanag@staff.msu.ac.zw

Figure S1: TGA traces of the as made JMS-1, activated JMS-1a and Ru(II)@JMS-1a

Figure S2: FTIR studies of JMS-1a and Ru(II)@JMS-1a showing characteristic carboxylate stretches

located at the same positions.

Figure S3: Nitrogen adsorption and desorption studies at 77K for JMS-1a and Ru(II)@JMS-1a

Figure S4. ¹HNMR of (a) JMS-1a in D_2O , (b) [RuCl₂-*p*cymene]₂ and (c) Ru(II)@JMS-1a in D_2O .

Example 1, Entry 3 (Table 2)

Figure S5: NMR of entry 3 (Table 2)

Amount of sample after catalysis for NMR	=	0.2 mL
NMR solvent, D ₂ O	=	0.3 mL
Volume of ethanol used for catalysis	=	8.0 mL
Moles of Standard and volume of standard used (3µL)	=	0.0000405836 calculated from density

The product potassium formate has 1 proton, so we divide the integral value for fromate by 1. Acetone, the internal standard has 6 protons, so divide the integral value for acetone by 6.

Acetone	e =	=	4.71/6 =	0.785				
Formate	e =	=	1/1	=	1			
Number of moles of formate $=$			ormate =	(0.0000405836)/(0.785/1)				
= 0.0000517 mols in 0.2mL product								
Moles i	n 8 mL			=	0.00207 mol			

Yield = (moles of formate produced/moles of KOH) * 100% = (0.00207/0.005)= 41.4%

Table S1: Catalytic performance of JMS-1a and Ru(II)@JMS-1a showing the actual mass of MOF used in mg

Entry	Catalyst	Temp/ °C	Ratio CO ₂ /H ₂	Mass of MOF used/mg	Base	Solvent	Formate (mmol)	Yield/ %
1	Ru(II)@JMS-1a	90	1:3	31.5	КОН	THF	-	0
2	Ru(II)@JMS-1a	90	1:3	31.5	КОН	Toluene	-	0
3	Ru(II)@JMS-1a	90	1:3	31.5	КОН	Ethanol	2.07	41.4
4	Ru(II)@JMS-1a	90	1:3	31.5	K_2CO_3	Ethanol	1.43	26.7
5	Ru(II)@JMS-1a	90	1:3	31.5	NaHCO ₃	Ethanol	1.75	35.0
6	Ru(II)@JMS-1a	90	1:3	31.5	Et ₃ N	-	0.27	≈5
7	No catalyst	90	1:3	31.5	КОН	Ethanol	-	0
8	Ru(II)@JMS-1a	90	1:3	31.5	No base	Ethanol	-	0
9	Ru(II)@JMS-1a	110	0:4	31.5	КОН	Ethanol	-	0
10	Ru(II)@JMS-1a	110	1:0	31.5	КОН	Ethanol	-	0
11	Ru(II)@JMS-1a	110	1:4	31.5	КОН	Ethanol	4.77	95
12	Ru(II)@JMS-1a	110	1:4	41.8	КОН	Ethanol	4.94	98.8
13	JMS-1a	110	1:4	15.9	КОН	Ethanol	3.10	62.0

Poisoning studies

Figure S6. Catalysis in the presence of benzylmercaptan

Figure S7. Catalysis in the presence of 8 mercapto-1-octanol

Figure S8 Catalysis in the presence of 2 mercapto-ethanol

Figure S9: Catalysis in the presence of 2 methyl 2 propanethiol

Figure S10: FTIR studies of JMS-1a and Ru(II)@JMS-1a showing characteristic carboxylate asymmetric and symmetric stretches located in similar positions.

Figure S11: A comparison of the thermal profiles of the MOFs before and after catalysis