Supplementary data

Fig.S1 The thermogravimetric (TG) analysis and differential thermal analysis (DTA) of PX-AH (a) and yellow solid precipitate (b). In (b), about 5.01% of mass loss was observed around 100 °C.

Fig. S2 The powder X-ray diffraction patterns of PX-AH (a) and yellow solid precipitate obtained from the dissolution study (b). The patterns of the PX-AH used in this study and the precipitate were compared to that of the PX-AH and PX-MH structure with a reference code of BIYSEH4 and CIDYAP indexed in the Cambridge Structural Database (CSD).

Fig.S3 The ATR-FTIR spectra of PX-AH (a) and yellow solid precipitate (b) obtained from the dissolution study of PX-AH in the absence of LAs.

Fig.S4 The ATR-FTIR spectra of the solid phase of the samples when the dissolution study of PX-AH in 5 mM OXY solution was conducted in section 3.1.2.

	[PX] _{24h}	$\Delta[PX]_{24h}$	γ	$\Delta\gamma$
control	1.32	0.00	71.24	0.00
5 mM OXY	0.73	-0.59	46.86	-24.38
5 mM TET	0.71	-0.60	46.05	-25.19
5 mM LID	1.33	0.02	62.88	-8.36
5 mM DIB	0.06	-1.25	32.04	-39.20

Table S1. The values $[PX]_{24h}$, $\Delta[PX]_{24h}$, γ , and $\Delta\gamma$ of for each LAs.

a: [PX]_{24 h} is the concentration of PX at 24h in buffer or 5 mM basic drug solutions

b: $\Delta[PX]_{24 h} = [PX_{5 mM basic drugs}]_{24 h} - [PX_{control}]_{24 h}$

c: Surface tension of 5 mM basic drug solutions. Control is the buffer solution without basic drugs.

d: $\Delta \gamma = \gamma_5 \text{ mM basic durg} - \gamma_{\text{control}}$

Fig. S5 Δ [PX]_{24 h} and $\Delta\gamma$ of LAs. For Δ [PX]_{24 h} and $\Delta\gamma$, the values in Table S1 of each LAs are used.

Fig. S6 The photos of the samples shined with light to observe the Tyndall effect. (a) PX-AH in buffer (before stirring), (b) PX-AH in 5 mM OXY solution (before stirring), (c) PX-AH in buffer (after stirring 6 h), (d) PX-AH in 5 mM OXY (after stirring 6 h) and (e) hydrogel of agarose (before stirring). The Tyndall effect only showed in (e).

Fig. S7 The dissolution behavior of PX-MH in the absence and presence of OXY.

Fig. S8 The ATR-FTIR spectra of PX/OXY (a), PX/LID (b), and PX/DIB (c) mixtures in the molar ration of 1:1.

Fig. S9 The results of ¹H-NMR analysis of PX/OXY, PX/LID, and PX/DIB mixtures in DMSO-*d*₆. The size of the circle shows how much the chemical shift shifted ($\Delta\delta$) to lower (red) or higher (blue) magnetic field due to mixing PX and each LAs. The value written near each circle is the value of $\Delta\delta$.