Supporting Information

In situ Raman and FTIR Spectroscopic Study of AI MOF Isomer MIL68(AI) and MIL-53(AI) Formation

Heidemarie Embrechts ${ }^{1,2}$; Martin Kriesten ${ }^{3}$; Matthias Ermer ${ }^{3}$; Wolfgang Peukert ${ }^{1,2}$; Martin Hartmann *2,3; Monica Distaso *1,2
${ }^{1}$ Institute of Particle Technology, FAU Erlangen-Nürnberg, Cauerstr. 4 - 91058, Erlangen, Germany
${ }^{2}$ Interdisciplinary Center for Functional Particle Systems, FAU Erlangen-Nürnberg, Haberstr. 9a - 91058, Erlangen, Germany
${ }^{3}$ Erlangen Center for Interface Research and Catalysis (ECRC) , FAU Erlangen-Nürnberg, Egerlandstr. 3 - 91058, Erlangen, Germany

Table of Contents

1. Simulated MIL-68(AI) and MIL-53(AI) XRD patterns 2
2. MOF characterization 2
3. Activation energy calculations 7
4. Effect of HNO_{3} addition in DMF 8
5. Reference ${ }^{13} \mathrm{C}-\mathrm{NMR}$ measurements 9

1. Simulated MIL-68(AI) and MIL-53(AI) XRD patterns

Figure S1. Simulated XRD patterns of MIL-68(AI), MIL-53/p, MIL-53(DMF), and MIL-53($\mathrm{H}_{2} B D C$) from the crystal unit structure.

2. MOF characterization

Figure S2. Comparison of the FTIR spectra of MIL-68(AI) and MIL-53(AI)

Figure S3. Comparison of the Raman spectra of MIL-68(AI) and MIL-53(AI) in DMF: (a) full intensity spectra and (b) close-up of the spectral range between 1750 and $750 \mathrm{~cm}^{-1}$. The three MOF band vibrations at 1617, 1148 and $824 \mathrm{~cm}^{-1}$ are assigned to $v C C$, ($v C C+\delta C H$) and $\omega C C$, respectively. Vibration bands have been assigned according to Hoffmann et al. reference 42 of the paper.

Figure S4. XRD patterns of MOF product synthesized with $0,1.5,2.5,3.5$, and 4 M formic acid modulation at $80^{\circ} \mathrm{C} . \S=\mathrm{MIL}-68$.

Figure S5. N_{2} sorption isotherms of MOF product synthesized in DMF at various temperatures both without and with 2.5 M formic acid modulation.

Table S1. BET area in $\mathrm{m}^{2} \mathrm{~g}^{-1}$ of MOF products synthesized at various temperatures in DMF with and without 2.5 M formic acid modulation.

	$55^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
unmodulated		1294	1132	1062
modulated	1468	1411	1323	1161

Figure S6. (a) TGA profiles, and (b) N_{2} sorption isotherms of products of 2.5 M formic acid modulated synthesis in DMF at $55^{\circ} \mathrm{C}$ after 42,90 and 164 h heating and after an additional 48 h heating at $120^{\circ} \mathrm{C} . \mathrm{x}=\mathrm{MIL}(\mathrm{DMF})$.

Figure S7. (a) FTIR, and (b) TGA profiles of MIL-68(AI) isolated after 42 h synthesis at $55^{\circ} \mathrm{C}$ modulated with 2.5 M formic acid directly after synthesis (unwashed) and after three centrifugation rounds in ethanol (washed). $x=\operatorname{MIL}(D M F) . o=\operatorname{MIL}\left(H_{2} \mathrm{O}\right)$.

Table S2. BET area of MOF products synthesized in DMF with 2.5 M formic acid modulation at $55^{\circ} \mathrm{C}$ after 42,90 , and 164 h and after an additional 48 h heating at $120^{\circ} \mathrm{C}$.

42 h	90 h	164 h	+ heating

BET area $/ \mathrm{m}^{2} \mathrm{~g}^{-1}$	1422	1468	1372	1238

Figure S8. Pore geometry around the $\mathrm{Al} \mu$-OH group in MIL-68(AI) compared to that in MIL53(AI).

3. Activation energy calculations

Figure S9. Sharp Hancock plots of the normalized Raman (${ }^{2} \mathrm{CC}+\delta \mathrm{CH}$) MOF and $\delta\left(\mathrm{COO}^{-}\right)$ PNBU band areas for 2.5 M formic acid modulated synthesis in DMF at various temperatures and the corresponding Arrhenius plots with slopes equal to $-E_{a}$ (activation energy) / R.

4. Effect of HNO_{3} addition in DMF

Figure S10. (a) Evolution of the characteristic PNBU and MOF band areas during MOF synthesis at $80^{\circ} \mathrm{C}$ in DMF with and without 33 mM added HNO_{3} (acid equivalent to 2.5 M formic acid). (b) XRD patterns of MIL-53(DMF) product synthesized at $80^{\circ} \mathrm{C}$ for 17 h in DMF with and without 33 mM added HNO_{3}.

5. Reference ${ }^{13} \mathrm{C}$-NMR measurements

Figure S11. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of DMF, $0.33 \mathrm{M} \mathrm{H}_{2} \mathrm{BDC}$ in DMF, $2.5 \mathrm{M} \mathrm{HC}(\mathrm{O}) \mathrm{OH}$ in DMF, and both $0.33 \mathrm{M} \mathrm{H}_{2} \mathrm{BDC}$ and $2.5 \mathrm{M} \mathrm{HC}(\mathrm{O}) \mathrm{OH}$ in DMF. $\mathrm{x}=\mathrm{DMF}$, \# = septet from DMSO, * $=\mathrm{H}_{2} B D C$, ** $=\mathrm{HC}(\mathrm{O}) \mathrm{OH}$.

