Supporting Information

In situ Raman and FTIR Spectroscopic Study of AI MOF Isomer MIL-68(AI) and MIL-53(AI) Formation

Heidemarie Embrechts ^{1,2}; Martin Kriesten ³; Matthias Ermer ³; Wolfgang Peukert ^{1,2}; Martin

Hartmann *2,3; Monica Distaso *1,2

¹ Institute of Particle Technology, FAU Erlangen-Nürnberg , Cauerstr. 4 – 91058, Erlangen, Germany

² Interdisciplinary Center for Functional Particle Systems, FAU Erlangen-Nürnberg, Haberstr. 9a – 91058, Erlangen,
Germany

³ Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3 – 91058, Erlangen, Germany

Table of Contents

1.	Simulated MIL-68(AI) and MIL-53(AI) XRD patterns	.2
2.	MOF characterization	.2
3.	Activation energy calculations	.7
4.	Effect of HNO ₃ addition in DMF	.8
5.	Reference ¹³ C-NMR measurements	.9

1. Simulated MIL-68(AI) and MIL-53(AI) XRD patterns

Figure S1. Simulated XRD patterns of MIL-68(AI), MIL-53/*p*, MIL-53(*DMF*), and MIL-53(*H*₂*BDC*) from the crystal unit structure.

2. MOF characterization

Figure S2. Comparison of the FTIR spectra of MIL-68(AI) and MIL-53(AI)

Figure S3. Comparison of the Raman spectra of MIL-68(AI) and MIL-53(AI) in DMF: (a) full intensity spectra and (b) close-up of the spectral range between 1750 and 750 cm⁻¹. The three MOF band vibrations at 1617, 1148 and 824 cm⁻¹ are assigned to vCC, (vCC + δ CH) and ω CC, respectively. Vibration bands have been assigned according to Hoffmann et al. reference 42 of the paper.

Figure S4. XRD patterns of MOF product synthesized with 0, 1.5, 2.5, 3.5, and 4 M formic acid modulation at 80 °C. § = MIL-68.

Figure S5. N_2 sorption isotherms of MOF product synthesized in DMF at various temperatures both without and with 2.5 M formic acid modulation.

Table S1. BET area in $m^2 g^{-1}$ of MOF products synthesized at various temperatures in DMF with and without 2.5 M formic acid modulation.

	55 °C	60 °C	80 °C	100 °C
unmodulated		1294	1132	1062
modulated	1468	1411	1323	1161

Figure S6. (a) TGA profiles, and (b) N_2 sorption isotherms of products of 2.5 M formic acid modulated synthesis in DMF at 55 °C after 42, 90 and 164 h heating and after an additional 48 h heating at 120 °C. x = MIL(*DMF*).

Figure S7. (a) FTIR, and (b) TGA profiles of MIL-68(AI) isolated after 42 h synthesis at 55 °C modulated with 2.5 M formic acid directly after synthesis (unwashed) and after three centrifugation rounds in ethanol (washed). x = MIL(DMF). $o = MIL(H_2O)$.

Table S2. BET area of MOF products synthesized in DMF with 2.5 M formic acid modulation at 55 °C after 42, 90, and 164 h and after an additional 48 h heating at 120 °C.

		42 h	90 h	164 h	+ heating
--	--	------	------	-------	-----------

Figure S8. Pore geometry around the AI μ -OH group in MIL-68(AI) compared to that in MIL-53(AI).

3. Activation energy calculations

Figure S9. Sharp Hancock plots of the normalized Raman (vCC + δ CH) MOF and δ (COO⁻) PNBU band areas for 2.5 M formic acid modulated synthesis in DMF at various temperatures and the corresponding Arrhenius plots with slopes equal to – E_a (activation energy) / R.

4. Effect of HNO₃ addition in DMF

Figure S10. (a) Evolution of the characteristic PNBU and MOF band areas during MOF synthesis at 80 °C in DMF with and without 33 mM added HNO₃ (acid equivalent to 2.5 M formic acid). (b) XRD patterns of MIL-53(*DMF*) product synthesized at 80 °C for 17 h in DMF with and without 33 mM added HNO₃.

5. Reference ¹³C-NMR measurements

Figure S11. ¹³C-NMR spectra of DMF, 0.33 M H₂BDC in DMF, 2.5 M HC(O)OH in DMF, and both 0.33 M H₂BDC and 2.5 M HC(O)OH in DMF. x = DMF, # = septet from DMSO, $* = H_2BDC$, ** = HC(O)OH.