Supporting Information

A direct functionalization of the C5 position of Neu5Ac2en achieved by an efficient 4,5-oxazoline ring-opening

Paola Rota, *a Paolo La Rocca, ${ }^{\mathrm{b}}$ Federica Cirillo, ${ }^{\text {c }}$ Marco Piccoli, ${ }^{\text {c }}$ Pietro Allevi ${ }^{\mathrm{a}}$ and Luigi Anastasia*b,c

${ }^{\text {a }}$ Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20133, Milan (Italy). E-mail: paola.rota@unimi.it; ${ }^{\text {b }}$ Department of Biomedical Sciences for Health, University of Milan, Via Fratelli Cervi 9, 20090, Segrate, Milan (Italy). E-mail: luigi.anastasia@unimi.it; ${ }^{\text {cLaboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, }}$ Piazza Malan 2, 20097, San Donato Milanese, Milan (Italy).

Contents	Page Number
General.	S2
Preparation of methyl 4,7,8,9-tetra-O-acetyl-5-amino-2,6-anhydro-3,5-dideoxy-D-glycero-D-talo-non-2-enoate (5).	S2
Preparation of methyl 4,7,8,9-tetra- O-acetyl-2,6-anhydro-3,5-dideoxy-5-propionamido-D-glycero-D-talo-non-2-enoate (6).	S3
Preparation of methyl 4,7,8,9-tetra- O-acetyl-2,6-anhydro-3,5-dideoxy-5-isobutyramido-D-glycero-D-talo-non-2-enoate (8).	S3
General procedure for the synthesis of the oxazolines 3b,c.	S4
Preparation of methyl oxazolo[5,4]-fused 7,8,9-tri- O-acetyl-2,3,4,5-tetradeoxy-2,3-didehydro-4',5'-dihydro-2'-ethyl-D-glycero-D-talo-non-2enoate (3b).	S4
Preparation of methyl oxazolo[5,4]-fused 7,8,9-tri- O-acetyl-2,3,4,5-tetradeoxy-2,3-didehydro-4',5'-dihydro-2'-isopropyl-D-glycero-D-talo-non-2-enoate (3c).	S4
Preparation of methyl 5-acetamido-7,8,9-tri- O-acetyl-2,6-anhydro-3,5-dideoxy-4-O-propionyl-D-glycero-D-talo-non-2-enoate (7).	S5
Preparation of methyl 7,8,9-tri- O-acetyl-2,6-anhydro-4-azido-3,4,5-trideoxy-5-isobutyramido-D-glycero-D-galacto-non-2-enoate (9).	S5
Preparation of methyl 5-acetamido-7,8,9-tri- O-acetyl-2,6-anhydro-3,5-dideoxy-D-glycero-D-talo-non-2-enoate (4b).	S6
NMR study on the compound 5.	S6
Oxazoline 3a hydrolysis with acetic acid according to the literature.	S7
References.	S8
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of compounds: 5, 6, 8, 3b, 3c, 7, 9, 4b, 10a and 10b.	S9-S20
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5}$ ammonium salt.	S21
${ }^{1} \mathrm{H}$ spectra of NMR study on the compound 5 .	S22

General

All chemicals and solvents used were of analytical grade and purchased from Sigma-Aldrich (St. Louis, MO, USA). The progress of all reactions was monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Sigma-Aldrich silica gel plates (60 F254) using UV light, anisaldehyde $/ \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{EtOH}$ solution or 0.2% ninhydrin in ethanol and heat as the developing agent. Flash chromatography was performed with normal phase silica gel (Sigma-Aldrich 230-400 mesh silica gel). Nuclear magnetic resonance spectra were recorded at 298 K on a Bruker AM-500 spectrometer equipped with a $5-\mathrm{mm}$ inverse-geometry broadband probe and operating at 500.13 MHz for ${ }^{1} \mathrm{H}$ and 125.76 MHz for ${ }^{13} \mathrm{C}$. Chemical shifts are reported in parts per million and are referenced for ${ }^{1} \mathrm{H}$ spectra, to a solvent residue proton signal ($\delta=7.26 \mathrm{ppm}$ for CDCl_{3}) and for ${ }^{13} \mathrm{C}$ spectra, to solvent carbon signal (central line at $\delta=77.0 \mathrm{ppm}$, for CDCl_{3}). The chemical shifts for the spectra collected in $\mathrm{CD}_{3} \mathrm{CN}-\mathrm{D}_{2} \mathrm{O}(1: 1, \mathrm{v} / \mathrm{v})$ are referenced to the internal $\mathrm{CD}_{3} \mathrm{CN}$ residue proton signal $(\delta=$ 1.94 ppm for ${ }^{1} \mathrm{H}$ spectra and $\delta=1.24 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$ spectra). Otherwise, during the NMR study on compound 5 the ${ }^{1} \mathrm{H}$ spectra, collected in $\mathrm{CD}_{3} \mathrm{CN}-\mathrm{D}_{2} \mathrm{O}(1: 1 \mathrm{v} / \mathrm{v})$, are referenced to the methyl ester signal of the analyzed compound, fixed at $\delta=3.80 \mathrm{ppm}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances were assigned by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ (COSY) and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ (HSQC and HMBC) correlation 2D experiments. The ${ }^{1} \mathrm{H}$ NMR data are tabulated in the following order: multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{br} \mathrm{s}=\mathrm{broad}$ singlet, $\mathrm{m}=$ multiplet, app=apparent), coupling constant(s) are given in Hz , number of protons, and assignment of proton(s). Optical rotations were taken on a Perkin-Elmer 241 polarimeter equipped with a 1 dm tube and the $[\alpha]_{\mathrm{D}}$ values are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Mass spectrometry spectra were obtained on an ABSciex 4000 Qtrap mass spectrometer equipped with an ESI ion source. The spectra were collected in a continuous flow mode by connecting the infusion pump directly to the ESI source. Solutions of the compounds were infused at a flow rate of $0.01 \mathrm{~mL} \mathrm{~min}^{-1}$, the spray voltage was set at 4.5 kV in the negative ion mode with a capillary temperature of $550^{\circ} \mathrm{C}$. Full-scan mass spectra were recorded by scanning an m / z range of 100-2000.

Preparation of methyl 4,7,8,9-tetra-O-acetyl-5-amino-2,6-anhydro-3,5-dideoxy-D-glycero-D-talo-non-2-enoate (5).

Preparation and physicochemical properties are reported as footnote in the paper.
Further data: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}^{2} \mathrm{D}_{2} \mathrm{O}, 1: 1 \mathrm{v} / \mathrm{v}$): $\delta=6.11\left(\mathrm{~d}, J_{3,4}=5.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3\right), 5.59(\mathrm{dd}$, $\left.J_{7,6}=1.6, J_{7,8}=7.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-7\right), 5.43\left(\mathrm{ddd}, J_{8,9 \mathrm{a}}=2.6, J_{8,9 \mathrm{~b}}=5.6, J_{8,7}=7.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8\right), 5.25(\mathrm{dd}$, $\left.J_{4,5}=4.2, J_{4,3}=5.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4\right), 4.56\left(\mathrm{dd}, J_{9 \mathrm{a}, 8}=2.6, J_{9 \mathrm{a}, 9 \mathrm{~b}}=12.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-9 \mathrm{a}\right), 4.30-4.23$ (overlapping with water signal, H-9b), 4.12 (dd, $\left.J_{6,7}=1.6, J_{6,5}=10.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6\right), 3.80(\mathrm{~s}, 3 \mathrm{H}$; $\left.\mathrm{COOCH}_{3}\right), 3.04\left(\mathrm{dd}, J_{5,4}=4.2, J_{5,6}=10.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-5\right), 2.17\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 2.11(\mathrm{~s}, 3 \mathrm{H} ;$ $\left.\mathrm{OCOCH}_{3}\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 2.08 \mathrm{ppm}\left(\mathrm{s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right)$.

Preparation of methyl 4,7,8,9-tetra-O-acetyl-2,6-anhydro-3,5-dideoxy-5-propionamido-D-glycero-D-talo-non-2-enoate (6).

6

To a solution of amine $5(345 \mathrm{mg}, 0.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ a weak basic resin (IRA-67), in excess compared to acylating agent, was added and the reaction mixture was immediately treated with propionyl chloride $(0.175 \mathrm{ml}, 2.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $23^{\circ} \mathrm{C}$ until the complete formation of the compound $6(0.5 \mathrm{~h})$. At this time, $\mathrm{MeOH}(1.0 \mathrm{~mL})$ was added and the mixture was stirred for 15 minutes, filtered (washing with $8 \mathrm{~mL} \mathrm{of} \mathrm{CH}_{2} \mathrm{Cl}_{2}$) and evaporated. After flash chromatographic purification (eluting with AcOEt/hexane, 8:2 v/v) compound $\mathbf{6}$ was obtained as a white solid ($304 \mathrm{mg}, 78 \%$): $[\alpha]_{\mathrm{D}}{ }^{23}=-136.5$ ($\mathrm{c}=1.0$ in chloroform); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.19\left(\mathrm{~d}, J_{3,4}=5.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3\right), 5.51\left(\mathrm{~d}, J_{\mathrm{NH}, 5}=10.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NHCOCH} \mathrm{CH}_{3}\right), 5.47\left(\mathrm{dd}, J_{7,6}=2.2\right.$, $\left.J_{7,8}=4.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-7\right), 5.30\left(\mathrm{ddd}, J_{8,9 \mathrm{a}}=2.6, J_{8,7}=4.2, J_{8,9 \mathrm{~b}}=7.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8\right), 5.14$ (dd, $J_{4,5}=4.1$, $\left.J_{4,3}=5.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4\right), 4.77\left(\mathrm{dd}, J_{9 \mathrm{a}, 8}=2.6, J_{9 \mathrm{a}, 9 \mathrm{~b}}=12.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-9 \mathrm{a}\right), 4.60(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-5), 4.28(\mathrm{dd}$, $\left.J_{6,7}=2.2, J_{6,5}=11.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6\right), 4.17\left(\mathrm{dd}, J_{9 \mathrm{~b}, 8}=7.6, J_{9 \mathrm{~b}, 9 \mathrm{a}}=12.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-9 \mathrm{~b}\right), 3.79(\mathrm{~s}, 3 \mathrm{H} ;$ COOCH_{3}), 2.18-2.11 (overlapping, $2 \mathrm{H} ; \mathrm{NHCOCH}_{2} \mathrm{CH}_{3}$), $2.10\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 2.09(\mathrm{~s}, 3 \mathrm{H} ;$ $\left.\mathrm{OCOCH}_{3}\right), 2.07\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 2.05\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 1.09 \mathrm{ppm}\left(\mathrm{m}, 3 \mathrm{H} ; \mathrm{NHCOCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.2\left(\mathrm{NHCOCH}_{2} \mathrm{CH}_{3}\right), 170.5\left(2 \mathrm{C} ; \mathrm{OCOCH}_{3}\right.$ at $\mathrm{C}-8, \mathrm{OCOCH}_{3}$ at $\left.\mathrm{C}-9\right)$, $170.0\left(\mathrm{OCOCH}_{3}\right.$ at $\left.\mathrm{C}-7\right), 169.5\left(\mathrm{OCOCH}_{3}\right.$ at $\left.\mathrm{C}-4\right), 161.7(\mathrm{C}-1), 146.3(\mathrm{C}-2), 105.9(\mathrm{C}-3), 74.0(\mathrm{C}-6)$, $71.9(\mathrm{C}-8), 67.7(\mathrm{C}-7), 64.9(\mathrm{C}-4), 62.1(\mathrm{C}-9), 52.5\left(\mathrm{COOCH}_{3}\right), 44.0(\mathrm{C}-5), 29.5\left(\mathrm{NHCOCH}_{2} \mathrm{CH}_{3}\right)$, $20.9\left(2 \mathrm{C} ; 2 \mathrm{X} \mathrm{OCOCH}_{3}\right), 20.7(2 \mathrm{C} ; 2 \mathrm{X} \mathrm{OCOCH} 3), 9.2 \mathrm{ppm}\left(\mathrm{NHCOCH}_{2} \mathrm{CH}_{3}\right)$; MS (ESI positive): $m / z 488.2[\mathrm{M}+\mathrm{H}]^{+}, 510.2[\mathrm{M}+\mathrm{Na}]^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{12}$: C 51.74, H 6.00, N 2.87; found: C 51.69, H 6.12, N 3.10 .

Preparation of methyl 4,7,8,9-tetra- O-acetyl-2,6-anhydro-3,5-dideoxy-5-isobutyramido-D-glycero-D-talo-non-2-enoate (8).

To a solution of oxazoline $\mathbf{3 a}{ }^{1}(413 \mathrm{mg}, 1.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}, 1: 1 \mathrm{v} / \mathrm{v}(15 \mathrm{~mL})$ TFA (0.2 mL) was added and the reaction was stirred at $23^{\circ} \mathrm{C}$ until the complete disappearance of the starting material ($5-15$ minutes), by monitoring with TLC (AcOEt). At this time, a weak basic resin (IRA67), in excess compared to the acylating agent, was added and the reaction mixture was immediately treated with isobutyric anhydride $(0.730 \mathrm{~mL}, 4.5 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $23^{\circ} \mathrm{C}$ until the complete formation of the desired compound $\mathbf{8}(1 \mathrm{~h}) . \mathrm{MeOH}(3 \mathrm{~mL})$ was added and the reaction mixture was stirred for 15 minutes, filtered (washing with 20 mL AcOEt) and evaporated. After purification by flash chromatography (eluting with AcOEt/hexane, 6:4 to 7:3 v/v), the compound $\mathbf{8}$ ($391 \mathrm{mg}, 78 \%$) was obtained as a white amorphous solid: $[\alpha]_{\mathrm{D}}{ }^{23}=-123.0$ ($\mathrm{c}=1.0$ in chloroform) ; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.17\left(\mathrm{~d}, J_{3,4}=5.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3\right.$), $5.49\left(\mathrm{~d}, J_{\mathrm{NH}, 5}=10.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$; $\left.\mathrm{N} H \mathrm{COCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.44\left(\mathrm{dd}, J_{7,6}=2.2, J_{7,8}=4.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-7\right), 5.28\left(\mathrm{ddd}, J_{8,9 \mathrm{a}}=2.6, J_{8,7}=4.2, J_{8,9 \mathrm{~b}}\right.$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8), 5.17\left(\mathrm{dd}, J_{4,5}=4.2, J_{4,3}=5.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4\right), 4.74\left(\mathrm{dd}, J_{9 \mathrm{a}, 8}=2.6, J_{9 \mathrm{a}, 9 \mathrm{~b}}=12.4 \mathrm{~Hz}\right.$, $1 \mathrm{H} ; \mathrm{H}-9 \mathrm{a}), 4.57(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-5), 4.26\left(\mathrm{dd}, J_{6,7}=2.2, J_{6,5}=10.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6\right), 4.17\left(\mathrm{dd}, J_{9 \mathrm{~b}, 8}=7.5, J_{9 \mathrm{~b}, 8}\right.$ $=12.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-9 \mathrm{~b}), 3.78\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{COOCH}_{3}\right), 2.33-2.24\left(\mathrm{sept},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NHCOCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.09\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 2.07\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 1.11-$ 1.06 ppm (overlapping, $\left.6 \mathrm{H} ; \mathrm{NHCOCH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.2$ $\left(\mathrm{NHCOCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 170.5\left(2 \mathrm{C} ; \mathrm{OCOCH}_{3}\right.$ at $\mathrm{C}-8, \mathrm{OCOCH}_{3}$ at $\left.\mathrm{C}-9\right), 169.8\left(\mathrm{OCOCH}_{3}\right.$ at $\left.\mathrm{C}-7\right), 169.5$ $\left(\mathrm{OCOCH}_{3}\right.$ at C-4), $161.7(\mathrm{C}-1), 146.3(\mathrm{C}-2), 105.9(\mathrm{C}-3), 74.0(\mathrm{C}-6), 71.9(\mathrm{C}-8), 67.7(\mathrm{C}-7), 64.7$ (C4), $62.1(\mathrm{C}-9), 52.5\left(\mathrm{COOCH}_{3}\right), 43.9(\mathrm{C}-5), 35.6\left(\mathrm{NHCOCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 20.9\left(\mathrm{OCOCH}_{3}\right), 20.8$ $\left(\mathrm{OCOCH}_{3}\right), \quad 20.7 \quad\left(\mathrm{OCOCH}_{3}\right), \quad 20.6 \quad\left(\mathrm{OCOCH}_{3}\right), \quad 19.5 \quad\left(\mathrm{NHCOCH}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 18.9 \mathrm{ppm}$ ($\mathrm{NHCOCH}\left(\mathrm{CH}_{3}\right)_{2}$); MS (ESI positive): $m / z 502.1[\mathrm{M}+\mathrm{H}]^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{12}$: C 52.69 , H 6.23, N 2.79 ; found: C 52.75 , H 6.08, N 2.55 .

General procedure for the synthesis of the oxazolines 3b,c: To a solution of glycal $\mathbf{6}$ or $\mathbf{8}$ (0.7 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL}), \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.35 \mathrm{~mL}, 2.8 \mathrm{mmol})$ was added at $23^{\circ} \mathrm{C}$ and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 20 min in a sealed tube. Then, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15$ $\mathrm{mL})$ containing $\mathrm{Et}_{3} \mathrm{~N}(1.94 \mathrm{~mL}, 14 \mathrm{mmol})$, washed with saturated NaHCO_{3} solution and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Then, the crude was purified by a flash chromatography eluting with AcOEt/hexane, $7: 3 \mathrm{v} / \mathrm{v}$ containing the 0.3% of $\mathrm{Et}_{3} \mathrm{~N}$.

Preparation of methyl oxazolo[5,4]-fused 7,8,9-tri-O-acetyl-2,3,4,5-tetradeoxy-2,3-didehydro-4',5'-dihydro-2'-ethyl-D-glycero-D-talo-non-2-enoate (3b).

Starting from compound 6 ($341 \mathrm{mg}, 0.7 \mathrm{mmol}$), according to general oxazoline procedure, compound 3b ($209 \mathrm{mg}, 70 \%$) was achieved as a white amorphous solid: $[\alpha]_{\mathrm{D}}{ }^{23}=-18.0$ ($\mathrm{c}=1.0$ in chloroform); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.37\left(\mathrm{~d}, J_{3,4}=4.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3\right), 5.61\left(\mathrm{dd}, J_{7,6}=3.0, J_{7,8}=5.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$; $\mathrm{H}-7$), 5.46 (ddd, $\left.J_{8,9 \mathrm{a}}=2.6, J_{8,7}=5.6, J_{8,9 \mathrm{~b}}=6.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8\right), 4.81\left(\mathrm{dd}, J_{4,3}=4.0, J_{4,5}=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$; $\mathrm{H}-4), 4.56\left(\mathrm{dd}, J_{9 \mathrm{a}, 8}=2.6, J_{9 \mathrm{a}, 9 \mathrm{~b}}=12.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-9 \mathrm{a}\right), 4.24\left(\mathrm{dd}, J_{9 \mathrm{~b}, 8}=6.6, J_{9 \mathrm{~b}, 9 \mathrm{a}}=12.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\right.$ $9 \mathrm{~b}), 3.98(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-5), 3.81\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{COOCH}_{3}\right), 3.44\left(\mathrm{dd}, J_{6,7}=3.0, J_{6,5}=9.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6\right), 2.30$ (overlapping, $2 \mathrm{H} ; \mathrm{CCH}_{2} \mathrm{CH}_{3}$), $2.14\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right.$), 2.05-2.03 (overlapping, $6 \mathrm{H} ; 2 \mathrm{X} \mathrm{OCOCH}_{3}$), $1.15 \mathrm{ppm}\left(\mathrm{s}, 3 \mathrm{H} ; \mathrm{CCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.0,170.5$, 169.7, 169.5 ($4 \mathrm{C} ; 3 \mathrm{X}$ OCOCH_{3} and $\mathrm{CCH}_{2} \mathrm{CH}_{3}$), $161.8(\mathrm{C}-1), 146.9(\mathrm{C}-2), 107.5(\mathrm{C}-3), 76.7(\mathrm{C}-6), 71.9(\mathrm{C}-4), 70.3(\mathrm{C}-8)$, $69.2(\mathrm{C}-7), 61.9(\mathrm{C}-9), 61.8(\mathrm{C}-5), 52.3\left(\mathrm{COOCH}_{3}\right), 21.5\left(\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 20.7\left(\mathrm{OCOCH}_{3}\right), 20.6$ $\left(\mathrm{OCOCH}_{3}\right), 20.5\left(\mathrm{OCOCH}_{3}\right), 10.1 \mathrm{ppm}\left(\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right)$; MS (ESI positive): $\mathrm{m} / \mathrm{z} 428.1[\mathrm{M}+\mathrm{H}]^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{10}$: C 53.39 , H 5.90 , N 3.28; found: C $53.55, \mathrm{H} 6.13, \mathrm{~N}$ 2.99 .

Preparation of methyl oxazolo[5,4]-fused 7,8,9-tri-O-acetyl-2,3,4,5-tetradeoxy-2,3-didehydro-4',5'-dihydro-2'-isopropyl-D-glycero-D-talo-non-2-enoate (3c).

Starting from compound $\mathbf{8}$ ($351 \mathrm{mg}, 0.7 \mathrm{mmol}$), according to general oxazoline procedure, compound $3 \mathbf{c}(210 \mathrm{mg}, 68 \%)$ was achieved as a white amorphous solid: $[\alpha]_{\mathrm{D}}{ }^{23}=-43.6\left(\mathrm{c}=1.0\right.$ in chloroform) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.34\left(\mathrm{~d}, J_{3,4}=4.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3\right), 5.56\left(\mathrm{dd}, J_{7,6}=3.5, J_{7,8}=5.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$; H-7), 5.44 (ddd, $\left.J_{8,9 \mathrm{a}}=2.6, J_{8,7}=5.2, J_{8,9 \mathrm{~b}}=6.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8\right), 4.76\left(\mathrm{dd}, J_{4,3}=4.0, J_{4,5}=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$; H-4), $4.52\left(\mathrm{dd}, J_{9 \mathrm{a}, 8}=2.6, J_{9 \mathrm{a}, 9 \mathrm{~b}}=12.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-9 \mathrm{a}\right), 4.20\left(\mathrm{dd}, J_{9 \mathrm{~b}, 8}=6.8, J_{9 \mathrm{~b}, 9 \mathrm{a}}=12.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\right.$ 9b), 3.95 (m, 1H; H-5), 3.77 (s, 3H; COOCH_{3}), 3.39 (dd, $\left.J_{6,7}=3.5, J_{6,5}=9.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6\right), 2.26$ (sept, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.11\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right.$ at $\mathrm{C}-7$), 2.04-2.00 (overlapping, $6 \mathrm{H} ; 2$ X OCOCH 3), 1.15-1.09 ppm (overlapping, $\left.6 \mathrm{H} ; \mathrm{NHCOCH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.0\left(\mathrm{CCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 170.5\left(\mathrm{OCOCH}_{3}\right.$ at $\left.\mathrm{C}-9\right), 169.8\left(\mathrm{OCOCH}_{3}\right.$ at $\left.\mathrm{C}-8\right), 169.5\left(\mathrm{OCOCH}_{3}\right.$ at $\left.\mathrm{C}-7\right)$, 161.8 (C-1), 146.9 (C-2), 107.5 (C-3), 76.9 (C-6), 71.9 (C-4), 70.4 (C-8), 69.6 (C-7), 62.0 (C-9), 61.8 (C-5), $52.4\left(\mathrm{COOCH}_{3}\right), 28.2\left(\mathrm{CCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 20.8\left(\mathrm{OCOCH}_{3}\right), 20.6(2 \mathrm{C} ; 2 \mathrm{X} \mathrm{OCOCH} 3), 19.5$
$\left(\mathrm{CCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $19.4 \mathrm{ppm}\left(\mathrm{CCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; MS (ESI positive): $\mathrm{m} / \mathrm{z} 442.3[\mathrm{M}+\mathrm{H}]^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{10}$: C 54.42, H 6.17, N 3.17; found: C 54.58, H 6.08, N 3.35 .

Preparation of methyl 5-acetamido-7,8,9-tri-O-acetyl-2,6-anhydro-3,5-dideoxy-4-O-propionyl -D-glycero-D-talo-non-2-enoate (7).

To a solution of oxazoline $\mathbf{3 b}(171 \mathrm{mg}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}, 1: 1 \mathrm{v} / \mathrm{v}(6 \mathrm{~mL})$, TFA (0.080 mL) was added and the mixture was stirred at $23^{\circ} \mathrm{C}$ until the complete disappearance of the starting material ($5-15$ minutes), by monitoring with TLC (AcOEt). At this time, a weak basic resin (IRA67), in excess compared to the acylating agent, was added and the reaction mixture was immediately treated with acetyl chloride $(0.128 \mathrm{ml}, 1.8 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $23^{\circ} \mathrm{C}$, until the complete transformation into the desired compound $7(0.5 \mathrm{~h})$. Then, $\mathrm{MeOH}(1.5 \mathrm{~mL})$ was added and the reaction mixture was stirred for 15 minutes, filtered (washing with 8 mL AcOEt) and evaporated. After a flash chromatographic purification (eluting with AcOEt/hexane, 8:2 v/v), the compound 7 ($156 \mathrm{mg}, 80 \%$) was obtained as a white amorphous solid: $[\alpha]_{\mathrm{D}}{ }^{23}=-131.0$ ($\mathrm{c}=1.0$ in chloroform); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.18\left(\mathrm{~d}, J_{3,4}=5.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3\right), 5.65\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{NHCOCH}_{3}\right), 5.47\left(\mathrm{dd}, J_{7,6}\right.$ $\left.=2.2, J_{7,8}=4.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-7\right), 5.29\left(\mathrm{ddd}, J_{8,9 \mathrm{a}}=2.6, J_{8,7}=4.1 \mathrm{~Hz}, J_{8,9 \mathrm{~b}}=7.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8\right), 5.14(\mathrm{dd}$, $\left.J_{4,5}=4.1, J_{4,3}=5.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4\right), 4.76\left(\mathrm{dd}, J_{9 \mathrm{a}, 8}=2.6, J_{9 \mathrm{a}, 9 \mathrm{~b}}=12.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-9 \mathrm{a}\right), 4.56\left(\mathrm{dd}, J_{5,4}=4.1\right.$, $\left.J_{5,6}=J_{5, \mathrm{NH}}=10.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-5\right), 4.25\left(\mathrm{dd}, J_{6,7}=2.2, J_{6,5}=10.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6\right), 4.16\left(\mathrm{dd}, J_{9 \mathrm{~b}, 8}=7.6\right.$, $J_{9 \mathrm{~b}, 9 \mathrm{a}}=12.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-9 \mathrm{~b}$), $3.77\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{COOCH}_{3}\right.$), 2.38-2.30 (overlapping, $2 \mathrm{H} ; \mathrm{OCOCH}_{2} \mathrm{CH}_{3}$), 2.08 $\left(\mathrm{s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 2.05\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 2.03\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 1.91\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{NHCOCH}_{3}\right), 1.14$ ppm (t, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.5 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.0\left(\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right)$, $170.5\left(\mathrm{OCOCH}_{3}\right.$ at $\mathrm{C}-8$ or $\left.\mathrm{C}-9\right), 170.4\left(\mathrm{OCOCH}_{3}\right.$ at $\mathrm{C}-8$ or $\left.\mathrm{C}-9\right), 170.1\left(\mathrm{OCOCH}_{3}\right.$ at $\left.\mathrm{C}-7\right), 169.6$ $\left(\mathrm{NHCOCH}_{3}\right), 161.7(\mathrm{C}-1), 146.2(\mathrm{C}-2), 106.0(\mathrm{C}-3), 73.9(\mathrm{C}-6), 71.8(\mathrm{C}-8), 67.7(\mathrm{C}-7), 64.6(\mathrm{C}-4)$, $62.1(\mathrm{C}-9), 52.5\left(\mathrm{COOCH}_{3}\right), 44.3(\mathrm{C}-5), 27.4\left(\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 23.1\left(\mathrm{NHCOCH}_{3}\right), 20.9\left(\mathrm{OCOCH}_{3}\right)$, $20.7\left(\mathrm{OCOCH}_{3}\right), 20.6\left(\mathrm{OCOCH}_{3}\right), 8.9\left(\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right)$; MS (ESI positive): $m / z 488.2[\mathrm{M}+\mathrm{H}]^{+}, 510.2$ $[\mathrm{M}+\mathrm{Na}]^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{12}$: C 51.74, H 6.00, N 2.87; found: C 51.56, H 6.16, N 2.61 .

Preparation of methyl 7,8,9-tri- O-acetyl-2,6-anhydro-4-azido-3,4,5-trideoxy-5-isobutyramido-D-glycero-D-galacto-non-2-enoate (9)

Starting from oxazoline 3c ($177 \mathrm{~g}, 0.4 \mathrm{~mol}$) in tert-butyl alcohol (3.0 mL) containing azidotrimethylsilane ($0.158 \mathrm{~mL}, 1.2 \mathrm{mmol}$), according to the literature procedure ${ }^{2}$ (performed on a different oxazoline), compound 9 ($145 \mathrm{mg}, 75 \%$) was achieved as a white solid: $[\alpha]_{\mathrm{D}}{ }^{23}=+85.4$ ($\mathrm{c}=1.0$ in chloroform); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.96\left(\mathrm{~d}, J_{\mathrm{NH}, 5}=8.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NHCOCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.94$ $\left(\mathrm{d}, J_{3,4}=2.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3\right), 5.38\left(\mathrm{dd}, J_{7,6}=1.9, J_{7,8}=5.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-7\right), 5.28\left(\mathrm{ddd}, J_{8,9 \mathrm{a}}=2.7, J_{8,7}=\right.$ $5.6, J_{8,9 \mathrm{~b}}=6.3 \mathrm{~Hz}, 1 \mathrm{H}$; H-8), 4.66-4.55 (overlapping, $3 \mathrm{H} ; \mathrm{H}-4, \mathrm{H}-6$ and H-9a), 4.18 (dd, $J_{9 \mathrm{~b}, 8}=6.3$, $\left.J_{9 \mathrm{~b}, 9_{\mathrm{a}}}=12.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-9 \mathrm{~b}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{COOCH}_{3}\right), 3.67(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-5), 2.36\left(\mathrm{sept},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$; $\left.\mathrm{CCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.12\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 2.02\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 1.16\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}}\right.$
$\left.=6.9 \mathrm{~Hz}, \mathrm{OCOCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.13\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.9 \mathrm{~Hz}, \mathrm{OCOCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; MS (ESI positive): $m / z 485.2$ $[\mathrm{M}+\mathrm{H}]^{+}$. Other chemical-physical properties were superimposable with those previously reported. ${ }^{3,4}$

Preparation of methyl 5-acetamido-7,8,9-tri- O-acetyl-2,6-anhydro-3,5-dideoxy-D-glycero-D-talo-non-2-enoate (4b).

4b
To a solution of oxazoline $\mathbf{3 a}{ }^{1}(413 \mathrm{mg}, 1.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL}, 1: 1 \mathrm{v} / \mathrm{v})$, TFA (0.2 mL) was added and the mixture was stirred at $23^{\circ} \mathrm{C}$ until the complete disappearance of the starting material (5-15 minutes), by monitoring with TLC (AcOEt). At this time, the reaction was treated with $\mathrm{Et}_{3} \mathrm{~N}(0.7 \mathrm{~mL}, 5.0 \mathrm{mmol})$ and stirred at $23^{\circ} \mathrm{C}$ for 40 minutes. Then, the reaction was quenched by the addition of a strong acidic resin (DOWEX $50 \mathrm{WX} 8 \mathrm{H}^{+}$) until acid pH , filtered (washing with 7 ml of MeOH), and evaporated to give quantitatively the crude product $\mathbf{4 b}$ and trace amount of triethylammonim salts (NMR evidence, see S21). After flash chromatography on silica gel (eluting from AcOEt to $\mathrm{AcOEt} / \mathrm{MeOH}, 95: 5 \mathrm{v} / \mathrm{v}$) compound $\mathbf{4 b}$ ($384 \mathrm{mg}, 89 \%$) was obtained as a white solid: m.p. $100-103^{\circ} \mathrm{C}$ (dec.) $\left[\right.$ lit. $\left.101-103^{\circ} \mathrm{C}^{5}\right],[\alpha]_{\mathrm{D}}^{23}=-34.9$ ($\mathrm{c}=1.0$ in chloroform) $\left[\right.$ lit. $[\alpha]_{\mathrm{D}}{ }^{23}=-34.14$ (c=1.4 in chloroform $\left.)^{5}[\alpha]_{\mathrm{D}}{ }^{23}=+64.0(\mathrm{c}=1.41 \mathrm{in} \text { chloroform })^{6}\right] ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=6.16\left(\mathrm{~d}, J_{3,4}\right.$ $=5.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3), 6.01\left(\mathrm{~d}, J_{\mathrm{NH}, 5}=9.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{N} H \mathrm{COCH}_{3}\right), 5.45\left(\mathrm{dd}, J_{7,6}=2.1, J_{7,8}=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$; $\mathrm{H}-7), 5.31$ (ddd, $\left.J_{8,9 \mathrm{a}}=2.5, J_{8,7}=4.3, J_{8,9 \mathrm{~b}}=7.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8\right), 4.79\left(\mathrm{dd}, J_{9 \mathrm{a}, 8}=2.5, J_{9 \mathrm{a}, 9 \mathrm{~b}}=12.4 \mathrm{~Hz}\right.$, $1 \mathrm{H} ; \mathrm{H}-9 \mathrm{a}$), 4.36 (m, 1H; H-5), 4.27-4.21 (overlapping, $2 \mathrm{H} ; \mathrm{H}-4$ and H-6), 4.18 (dd, $J_{9 \mathrm{~b}, 8}=7.6$, $J_{9 \mathrm{~b}, 9 \mathrm{a}}$ $=12.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-9 \mathrm{~b}), 3.81\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{COOCH}_{3}\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 2.06$ $\left(\mathrm{s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 1.96 \mathrm{ppm}\left(\mathrm{NHCOCH}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{D}_{2} \mathrm{O}, 1: 1 \mathrm{v} / \mathrm{v}\right): \delta=6.07(\mathrm{~d}$, $\left.J_{3,4}=5.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8\right), 4.44\left(\mathrm{dd}, J_{9 \mathrm{a}, 8}=2.7, J_{9 \mathrm{a}, 9 \mathrm{~b}}=12.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-9 \mathrm{a}\right.$), 4.17 (overlapping with water signal; H-6), $4.10\left(\mathrm{dd}, J_{9 \mathrm{~b}, 8}=6.1, J_{9 \mathrm{~b}, 9_{\mathrm{a}}}=12.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-9 \mathrm{~b}\right.$), 4.09-4.02 (overlapping, 2H; H-5 and $\mathrm{H}-4), 3.71\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{COOCH}_{3}\right), 1.99\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 1.98$ (overlapping, $6 \mathrm{H} ; 2 \mathrm{X} \mathrm{OCOCH} 3$), 1.84 ppm (s, $3 \mathrm{H} ; \mathrm{NHCOCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{D}_{2} \mathrm{O}, 1: 1 \mathrm{v} / \mathrm{v}$): $\delta=173.5\left(\mathrm{NHCOCH}_{3}\right), 173.3$ $\left(\mathrm{OCOCH}_{3}\right.$ at $\left.\mathrm{C}-9\right), 172.4\left(2 \mathrm{C} ; 2 \mathrm{X} \mathrm{OCOCH}_{3}\right.$ at $\mathrm{C}-7$ and C-8), $164.0(\mathrm{C}-1), 145.2(\mathrm{C}-2), 111.4(\mathrm{C}-3)$, 72.7 (C-6), $70.9(\mathrm{C}-8), 68.8(\mathrm{C}-7), 63.1(\mathrm{C}-9), 61.3(\mathrm{C}-4), 53.4\left(\mathrm{COOCH}_{3}\right), 48.0(\mathrm{C}-5), 22.8$ $\left(\mathrm{NHCOCH}_{3}\right), 21.0\left(2 \mathrm{X} \mathrm{OCOCH}_{3}\right), 20.9 \mathrm{ppm}\left(\mathrm{OCOCH}_{3}\right)$. Other chemical-physical properties were superimposable with those previously reported. ${ }^{6,7}$

NMR study on the compound 5.

Oxazoline $3 \mathbf{a}^{1}$ ($36 \mathrm{mg}, 0.087 \mathrm{mmol}$) was dissolved in a mixture of $\mathrm{CD}_{3} \mathrm{CN} / \mathrm{D}_{2} \mathrm{O}, 1: 1 \mathrm{v} / \mathrm{v}(0.750 \mathrm{~mL})$, and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were acquired, showing signals coherent with its structure: ${ }^{1} \mathrm{H}-$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{D}_{2} \mathrm{O}, 1: 1 \mathrm{v} / \mathrm{v}$): $\delta=6.42\left(\mathrm{~d}, J_{3,4}=4.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3\right), 5.52\left(\mathrm{dd}, J_{7,6}=1.6, J_{7,8}\right.$ $=6.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-7), 5.34\left(\mathrm{ddd}, J_{8,9 \mathrm{a}}=2.6, J_{8,9 \mathrm{~b}}=5.7, J_{8,7}=6.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8\right), 4.96\left(\mathrm{dd}, J_{4,3}=4.1, J_{4,5}\right.$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4), 4.51\left(\mathrm{dd}, J_{9 \mathrm{a}, 8}=2.6, J_{9 \mathrm{a}, 9 \mathrm{~b}}=12.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-9 \mathrm{a}\right), 4.24$ (dd, overlapping with water signal, $\left.J_{9 \mathrm{~b}, 8}=5.7, J_{9 \mathrm{~b}, 9 \mathrm{a}}=12.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-9 \mathrm{~b}\right), 3.99(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-5), 3.80\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{COOCH}_{3}\right), 3.56(\mathrm{dd}$, $\left.J_{6,7}=1.6, J_{6,5}=10.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6\right), 2.16\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 2.04(\mathrm{~s}, 3 \mathrm{H} ;$ OCOCH_{3}), $1.99 \mathrm{ppm}\left(\mathrm{s}, 3 \mathrm{H} ; \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{D}_{2} \mathrm{O}, 1: 1 \mathrm{v} / \mathrm{v}$): $\delta=173.0,172.1$, 172.7, $169.7\left(4 \mathrm{C} ; 3 \mathrm{X} \mathrm{OCOCH}_{3}\right.$ and $\left.\mathrm{CCH}_{3}\right), 163.3(\mathrm{C}-1), 147.5(\mathrm{C}-2), 108.6(\mathrm{C}-3), 76.7(\mathrm{C}-6), 73.4$ (C-4), $70.6(\mathrm{C}-8), 69.1(\mathrm{C}-7), 62.8(\mathrm{C}-9), 61.6(\mathrm{C}-5), 53.4\left(\mathrm{COOCH}_{3}\right), 21.0\left(\mathrm{OCOCH}_{3}\right), 20.9$ $\left(\mathrm{OCOCH}_{3}\right), 20.8\left(\mathrm{OCOCH}_{3}\right), 14.1 \mathrm{ppm}\left(\mathrm{CCH}_{3}\right)$.
Then, TFA (0.017 mL) was added directly in NMR tube solution, mixed with a vortex (30 s) and ${ }^{1} \mathrm{H}-$ NMR and ${ }^{13} \mathrm{C}$-NMR were immediately acquired, showing signals attributable to the structure of the compound 5 as ammonium salt: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}^{2} \mathrm{D}_{2} \mathrm{O}, 1: 1 \mathrm{v} / \mathrm{v}\right): \delta=6.16\left(\mathrm{~d}, J_{3,4}=4.7 \mathrm{~Hz}\right.$,
$1 \mathrm{H} ; \mathrm{H}-3), 5.50\left(\mathrm{t}\right.$ app, $\left.J_{4,5}=J_{4,3}=4.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4\right), 5.41$ (ddd, $J_{8,9 \mathrm{a}}=2.6, J_{8,9 \mathrm{~b}}=5.1, J_{8,7}=6.9 \mathrm{~Hz}$, 1 H ; H-8), 5.34 (dd, $J_{7,6}=2.8, J_{7,8}=6.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-7$), 4.59 (dd, $\left.J_{6,7}=2.8, J_{6,5}=8.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6\right)$, 4.56-4.41 (overlapping with water signal, H-9a), 4.28 (dd, $J_{9 \mathrm{~b}, 8}=5.1, J_{9 \mathrm{~b}, 9 \mathrm{a}}=12.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-9 \mathrm{~b}$), $3.82\left(\mathrm{dd}, J_{5,4}=4.7, J_{5,6}=8.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-5\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{COOCH}_{3}\right), 2.18\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 2.13(\mathrm{~s}$, $\left.3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 2.09\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 2.06 \mathrm{ppm}\left(\mathrm{s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}-\right.$ $\left.\mathrm{D}_{2} \mathrm{O}, 1: 1 \mathrm{v} / \mathrm{v}\right): \delta=173.7,173.1,172.2,172.1\left(4 \mathrm{C} ; 4 \mathrm{X} \mathrm{OCOCH}_{3}\right), 162.8(\mathrm{C}-1), 146.2(\mathrm{C}-2), 106.1(\mathrm{C}-$ 3), 72.7 (C-6), 70.1 (C-8), $68.9(\mathrm{C}-7), 63.1(\mathrm{C}-4), 62.7(\mathrm{C}-9), 53.7\left(\mathrm{COOCH}_{3}\right), 47.1(\mathrm{C}-5), 21.1$ $\left(\mathrm{OCOCH}_{3}\right), 21.0\left(\mathrm{OCOCH}_{3}\right), 20.9 \mathrm{ppm}(2 \mathrm{C} ; 2 \mathrm{X} \mathrm{OCOCH} 3)$.
Subsequently, the solution was filtered on a small column containing IRA-67 to remove TFA acid, and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ was immediately acquired, showing signals consistent with compound $\mathbf{5}$ in amine form and traces of a second product superimposable to those of the alcohol $\mathbf{4 b}$.
The monitoring of the solution, by acquiring ${ }^{1} \mathrm{H}$ NMR spectra at different times (see S22), showed that after 6 days the only product present was the alcohol $\mathbf{4 b}$.

Oxazoline 3a hydrolysis with acetic acid according to the literature. ${ }^{7}$

To a solution of oxazoline $\mathbf{3 a}{ }^{1}(413 \mathrm{mg}, 1.0 \mathrm{mmol})$ in ethyl acetate $(4.4 \mathrm{~mL})$, acetic acid in water $(0.370 \mathrm{~mL}, 1: 1 \mathrm{v} / \mathrm{v})$ was added and the reaction mixture was stirred at $23^{\circ} \mathrm{C}$ overnight. ${ }^{7}$ Noteworthy, after 10 minutes, the partial transformation of the oxazoline 3a into the intermediate 5 was observed by monitoring in TLC (AcOEt). However, after stirring overnight, these compounds were completely transformed into the final reaction products. Then, the reaction mixture was diluted with ethyl acetate $(15 \mathrm{~mL})$ and neutralized with NaHCO_{3} solution. The organic layer was dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated.
The obtained crude was chromatographed on silica gel (eluting with AcOEt), affording a first fraction (125 mg), formed by two compounds (NMR evidence), and a second one constituted by the compound $\mathbf{4 b}$ ($220 \mathrm{mg}, 51 \%$). Compound $\mathbf{4 b}$ showed all the chemical-physical properties superimposable with those above reported.
The first fraction was chromatographed on silica gel eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone, $7: 3 \mathrm{v} / \mathrm{v}$, to afford, at first, the compound $\mathbf{1 0 a}(30 \mathrm{mg}, 7 \%)$, as a white amorphous solid: $[\alpha]_{\mathrm{D}}{ }^{23}=-116.4$ ($\mathrm{c}=0.5 \mathrm{in}$ chloroform); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.20\left(\mathrm{~d}, J_{3,4}=5.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3\right), 5.88\left(\mathrm{~d}, J_{\mathrm{NH}, 5}=8.6 \mathrm{~Hz}\right.$, $1 \mathrm{H} ; \mathrm{NHCOCH} 3$), $5.34\left(\mathrm{ddd}, J_{8,9 \mathrm{a}}=2.3, J_{8,9 \mathrm{~b}}=5.7, J_{8,7}=7.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8\right), 5.21\left(\mathrm{dd}, J_{4,5}=4.3, J_{4,3}=\right.$ $5.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4), 4.77\left(\mathrm{dd}, J_{9 \mathrm{a}, 8}=2.3, J_{9 \mathrm{a}, 9 \mathrm{~b}}=12.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-9 \mathrm{a}\right), 4.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H} ; \mathrm{OH}$ at C-7), 4.41 (ddd, $\left.J_{5,4}=4.3, J_{5, \mathrm{NH}}=8.6, J_{5,6}=11.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-5\right), 4.33\left(\mathrm{dd}, J_{9 \mathrm{~b}, 8}=5.7, J_{9 \mathrm{~b}, 9 \mathrm{a}}=12.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-9 \mathrm{~b}\right)$, $3.94\left(\mathrm{~d}\right.$ app, $\left.J_{6,5}=11.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6\right), 3.83\left(\mathrm{~d}\right.$ app, $\left.J_{7,8}=7.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-7\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{COOCH}_{3}\right)$, $2.14\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 2.13\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{NHCOCH}_{3}\right), 2.07\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right), 2.05 \mathrm{ppm}\left(\mathrm{s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.2\left(\mathrm{NHCOCH}_{3}\right), 170.7\left(\mathrm{OCOCH}_{3}\right.$ at $\left.\mathrm{C}-9\right)$, $169.8\left(\mathrm{OCOCH}_{3}\right.$ at $\mathrm{C}-8), 169.5\left(\mathrm{OCOCH}_{3}\right.$ at $\left.\mathrm{C}-4\right), 161.9(\mathrm{C}-1), 147.3(\mathrm{C}-2), 103.9(\mathrm{C}-3), 73.8(\mathrm{C}-6), 71.2(\mathrm{C}-8), 67.4$ (C-7), $65.2(\mathrm{C}-4), 62.9(\mathrm{C}-9), 52.6\left(\mathrm{COOCH}_{3}\right), 45.7(\mathrm{C}-5), 23.3\left(\mathrm{NHCOCH}_{3}\right), 21.0\left(2 \mathrm{X} \mathrm{OCOCH}_{3}\right)$, $20.8 \mathrm{ppm}\left(\mathrm{OCOCH}_{3}\right)$; MS (ESI positive): $m / z 432.0[\mathrm{M}+\mathrm{H}]^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{11}$: C 50.12 , H 5.84, N 3.25; found: C 49.89, H 6.05, N 3.42 .
Further elution yielded the isomeric compound $\mathbf{1 0 b}(78 \mathrm{mg}, 18 \%)$ as a white amorphous solid: $[\alpha]_{\mathrm{D}}{ }^{23}=-133.2$ (c=1.0 in chloroform); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.20\left(\mathrm{~d}, J_{3,4}=5.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\right.$ 3), $5.76\left(\mathrm{~d}, J_{\mathrm{NH}, 5}=10.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NHCOCH}_{3}\right.$), 5.19-5.14 (overlapping, $2 \mathrm{H} ; \mathrm{H}-4$ and $\mathrm{H}-7$), $4.60(\mathrm{~m}$, 1 H ; H-5), 4.46 (dd, $\left.J_{6,7}=2.0, J_{6,5}=11.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6\right), 4.30\left(\mathrm{ddd}, J_{8,9 \mathrm{a}}=3.1, J_{8,9 \mathrm{~b}}=6.2, J_{8,7}=8.1 \mathrm{~Hz}\right.$, $1 \mathrm{H} ; \mathrm{H}-8), 4.19\left(\mathrm{dd}, J_{9 \mathrm{a}, 8}=3.1, J_{9 \mathrm{a}, 9 \mathrm{~b}}=11.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-9 \mathrm{a}\right), 4.09\left(\mathrm{dd}, J_{9 \mathrm{~b}, 8}=6.2, J_{9 \mathrm{~b}, 9 \mathrm{a}}=11.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$; $\mathrm{H}-9 \mathrm{~b}), 3.80\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{COOCH}_{3}\right), 2.09\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right.$ at C 7$), 2.09\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCOCH}_{3}\right.$ at C 8$), 2.08(\mathrm{~s}$, $3 \mathrm{H} ; \mathrm{OCOCH}_{3}$ at C 4), $1.94 \mathrm{ppm}\left(\mathrm{s}, 3 \mathrm{H} ; \mathrm{NHCOCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.3$ $\left(\mathrm{OCOCH}_{3}\right.$ at $\left.\mathrm{C}-9\right), 170.4\left(\mathrm{OCOCH}_{3}\right.$ at $\mathrm{C}-4$ or at C-7), $169.8\left(\mathrm{NHCOCH}_{3}\right), 169.7\left(\mathrm{OCOCH}_{3}\right.$ at $\mathrm{C}-4$ or at C-7), 162.1 (C-1), 146.2 (C-2), 106.0 (C-3), 73.2 (C-6), 68.8 (C-7), 68.0 (C-8), 65.5 (C-9), 65.0 $(\mathrm{C}-4), 52.6\left(\mathrm{COOCH}_{3}\right), 44.2(\mathrm{C}-5), 23.2\left(\mathrm{NHCOCH}_{3}\right), 20.9\left(2 \mathrm{X} \mathrm{OCOCH}_{3}\right), 20.8 \mathrm{ppm}\left(\mathrm{OCOCH}_{3}\right)$; MS (ESI positive): $m / z 432.2[\mathrm{M}+\mathrm{H}]^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{11}$: C 50.12, H 5.84, N 3.25; found: C 50.01, H 5.96, N 3.15 .

References

1 I. S. Agnolin, P. Rota, P. Allevi, A. Gregorio and M. Anastasia, Eur. J. Org. Chem., 2012, 65376547.

2 M. Chandler, M. J. Bamford, R. Conroy, B. Lamont, B. Patel, V. K. Patel, I. P. Steeples, R. Storer, N. G. Weir, M. Wright and C. Williamson, J. Chem. Soc., Perkin Trans. 1, 1995, 1173-1180.

3 WO Pat., 2002/076971, 2002.
4 I. M. El-Deeb, P. Guillon, M. Winger, T. Eveno, T. Haselhorst, J. C. Dyason and M. von Itzstein, J. Med. Chem., 2014, 57, 7613-7623.

5 V. Kumar, S. W. Tanenbaum and M. Flashner, Carbohydr. Res., 1982, 101, 155-159.
6 G. B. Kok, D. Groves and M. von Itzstein, J. Chem. Soc., Perkin Trans. 1, 1999, 2109-2116.
7 J. Scheigetz, R. Zamboni, M. A. Bernstein and B. Roy, Org. Prep. Proced. Int., 1995, 27, 637644.

1H NMR (CDCI3)

13C NMR CD3CN-D2O

1 H NMR CDCI

6

1H NMR CDCI3

ppm (t 1)
13C NMR CDCI3

$\stackrel{\text { O. }}{\stackrel{\circ}{0}}$

8

ppm (t1)

1 H NMR CDCI

1H NMR CDCI

1H NMR CDCI3

