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S1. Capacitance of crystallites 

 

 

 

Figure S1: (a) Representative PEDOT crystallites composed of one, two and three PEDOT chains 

surrounded by counterions. (c) The total, quantum and classical capacitance of PEDOT crystallites. 

Carbon atoms are shown in grey, oxygens in red, sulphur in yellow, and chlor counterions in green. 
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S2. Representative distribution of counterions 

 

 

 

Figure S2: Representative distributions of counterions surrounding (a) PEDOT and (b) PPy chains for 

three different realizations. Carbon atoms are shown in grey, oxygens in red, sulphur in yellow, nitrogen 

in blue, and chlor counterions in green. (c) Potential distribution for a representative counterion 

configuration for N=12 PEDOT oligomer. Different images correspond to different planes at different 

distances from the PEDOT oligomers as shown in the figure.  
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S3. Dependence of the classical capacitance CC on the cutoff radius Rcutoff and the size of 

the computational domain. 

 

 

 

Figure S3: Dependence of CC on (a) the cutoff radius Rcutoff and (b) the size of the computational domain. 

Calculations correspond to the PEDOT chain of the length N=12. Rcutoff is given in units of the van der 

Waals radius of the atoms composing the PEDOT chain.  
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S4. Comparison of 6-31g(d) and 6-31g(d)+ basis sets 

 

 

 

Figure S4: The self-capacitance calculated for basis sets (a) 6-31g(d) and (b) 6-31g(d)+. Simulations 

were carried out for three single-layer PEDOT samples with 12, 16 and 20 monomers with the fully 

optimized geometries. The difference between obtained results is negligible, hence, all results reported 

in this study are performed with the 6-31g(d) basis set without the diffusive functions to boost a 

computational speed. 
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S5. Averaging over different disorder realizations. 

 

 

 

Figure S5. The dependence of the capacitance on the number of different counterion 

realizations for a PEDOT chains with a different number of counterions N. (a) N=12, (b) N=16, 

(c) N=20. Lower panels show zoomed images of the upper plots in the interval 20≤nrealizations≤50. 
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S6. Definition of the volumetric capacitance  

 

In order to calculate the volumetric capacitance we divide the calculated capacitance of each 

polymer sample by its overage volume V = N Vmon where N is a number of monomers in a 

considered oligomer (N=12,16,20), and Vmon is a volume per one monomer which is 

calculated as described below.   

The following mass densities of PEDOT and PPy are used, ρPEDOT=1.49 g/cm3 (Ref. 1) and 

ρPPy=2.1 g/cm3 (Ref. 2). 

Consider, for example the case of N=12 oligomer. Calculation of the mass of one PEDOT 

chain gives, 

𝑀𝑚𝑜𝑙
𝑃𝐸𝐷𝑂𝑇 = 2H + [C2H4O2C4S]12 

𝑀𝑚𝑜𝑙
𝑃𝐸𝐷𝑂𝑇 = 2 ∗ 1.008 + 12(6 ∗ 12.011 + 4 ∗ 1.008 + 2 ∗ 15.999 + 32.065)

= 1683.95 𝑔/𝑚𝑜𝑙 

𝑚𝑃𝐸𝐷𝑂𝑇 =
𝑀𝑚𝑜𝑙

𝑃𝐸𝐷𝑂𝑇

𝑁𝐴
=

1683.95

6.02 ∗ 1023
= 2.8 ∗ 10−21𝑔 

Calculation of the mass of one PPy chain gives, 

𝑀𝑚𝑜𝑙
𝑃𝑃𝑦

= 2H + [C2H2C2NH]12 

𝑀𝑚𝑜𝑙
𝑃𝑃𝑦

= 2 ∗ 1.008 + 12(4 ∗ 12.011 + 3 ∗ 1.008 + 14.007) = 782.92 𝑔/𝑚𝑜𝑙 

𝑚𝑃𝑃𝑦 =
𝑀𝑚𝑜𝑙

𝑃𝑃𝑦

𝑁𝐴
=

782.92

6.02 ∗ 1023
= 1.3 ∗ 10−21𝑔 

Finally, volumes per monomer and per oligomer are as follows, 

PEDOT: 

𝑉𝑃𝐸𝐷𝑂𝑇 =
𝑚𝑃𝐸𝐷𝑂𝑇

𝜌𝑃𝐸𝐷𝑂𝑇
=

2.8 ∗ 10−21𝑔

1.49 𝑔/𝑐𝑚3
= 1.9 ∗ 10−21𝑐𝑚3 

𝑉𝑃𝐸𝐷𝑂𝑇
𝑚𝑜𝑛 =

𝑉𝑃𝐸𝐷𝑂𝑇

12
=

1.9 ∗ 10−21𝑐𝑚3

12
= 1.58 ∗ 10−22𝑐𝑚3 
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PPy: 

𝑉𝑃𝑃𝑦 =
𝑚𝑃𝑃𝑦

𝜌𝑃𝑃𝑦
=

1.3 ∗ 10−21𝑔

2.1 𝑔/𝑐𝑚3
= 0.62 ∗ 10−21𝑐𝑚3 

𝑉𝑃𝑃𝑦
𝑚𝑜𝑛 =

𝑉𝑃𝑃𝑦

12
=

0.62 ∗ 10−21𝑐𝑚3

12
= 0.52 ∗ 10−22𝑐𝑚3 

Thanks to the higher density and lower molecular weight, effective volume per monomer in 

PPy:TOS is three times smaller than the volume per monomer in PEDOT:TOS. Note that for 

simplicity in the above calculations the changes in the mass density due to the change of the 

oxidation level were omitted.  
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S7. Computational boxes used for calculations of the classical capacitance. 

 

 

 

Figure S7. Parameters of simulation boxes for single-layer PEDOT (a,b,c), multilayer 

PEDOT (d,e) and single-layer PPy (f,g,h). All sizes are given in Å. Boundaries of polymers 

are depicted by dotted lines, boundaries of simulation boxes are shown with solid lines. 
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S8. Capacitance calculations with a pre-optimized geometry of polymers chains 

 

 

Figure S8. Comparison of the capacitance for the cases of pre-optimized the fully optimized 

geometries for PEDOT chains (upper and lower panels respectively). (a) Total capacitance, (b) 

quantum capacitance, (c) classical capacitance. PEDOT chains consist of 12, 16 or 20 

monomers as indicated in the figure. Note that the lower panel in the figure is the same as the 

upper panel in Figure 2 in the main text and is displayed here for a convenience of the 

comparison. 

 

Using pre-optimized samples is an efficient way to speed up the capacitance calculations with 

a minor decrease of accuracy. The calculations are performed in the following way. For 

instance, we want to calculate averaged total energy for the sample with Nions counterions for 

Nrealiz different spatial realizations. Instead of performing geometrical optimizations for all 

Nrealiz realizations, we optimize only one sample without counterions with the total charge Q = 
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+ Nions. Then, we use this pre-optimized geometry to perform a single-point energy calculation 

for each of these  Nrealiz different counterions locations. As a result, the calculations are typically 

10-15 times faster. Note however that calculations for non-optimized geometries become more 

unstable. This approach allows us to calculate the capacitance of much bigger systems including 

crystallites containing several chains when a full geometrical optimization becomes too 

computationally expensive. Figure S8 shows the capacitance of PEDOT chains of different 

lengths N=12, 16 or 20 monomers calculated with and without full optimization. The obtained 

values of the capacitance are in a good quantitative agreement with each other.   
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S9. Hartree-Fock capacitance calculations. 

 

 

Figure S9: Comparison of the calculated (a),(b) self-capacitance and (c),(d) capacitance using 

the DFT and Hartree-Fock approaches. The total capacitances, quantum, and classical 

capacitances are calculated for PEDOT oligomers of the lengths N=12,16,20 as indicated in 
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figures. Data in (a), (b) and (c) were calculated for fully optimized structures. Capacitances of 

oligomers with counterions, obtained with HF method (d) were calculated for the pre-optimized 

structures. 

 

While DFT calculations were performed for fully optimized systems, HF calculations were 

carried out for the DFT pre-optimized systems as those described in Sec. S8. That is, that 

polymers without counterions are initially optimized using DFT calculations and the final single 

point calculations of the electronic structure and natural population analysis charges are 

performed with the restricted HF in Gaussian16.  

 

Table S1. Comparison between HF and DFT calculations. Total capacitances were obtained 

after averaging among the capacitances for all considered oxidation levels of all considered 

chains. Quantum capacitances were calculated after averaging among capacitances for 

oxidation levels < 40% (CQ rapidly grows with a further increase of the oxidation level).  

Classical capacitance is calculated for the oxidation level 33% (corresponding to a pristine (as 

oxidized) PEDOT:PSS blend) 

 

Method Self C, 

F/cm3 

C, F/cm3 Self CQ, 

F/cm3 

CQ, F/cm3 Self CC, 

ox=33%, 

F/cm3 

CC,  

ox=33%, 

F/cm3 

DFT 21.4 105 37.5 45.3 135.8 215.7 

HF 21.2 85.8 25.6 31.7 134.8 175.5 

 

A comparison between the DFT and HF calculated results is summarized in Table S1. The total 

capacitances and the quantum capacitancies calculated based on the HF approach are ~ 20‒30%  
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smaller than corresponding DFT results. Classical capacitance is almost unaffected by choosing 

of the calculation method. This is because of the similarity between electrostatic potential 

obtained within the DFT and HF methods. The good agreement between the DFT and HF 

results demonstrates that HF method can potentially be used in the calculation of the 

capacitance in the cases when DFT fails to achieve converged results, for instance, in systems 

with extremely high oxidation level or large distance between charged molecules (>4 Å).  
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S10. Numerical calculations of the classical capacitance.  

 

 

 

Figure S10: Calculations of a classical self-capacitance for a charged sphere. (a) A 

visualization of the charged sphere for analytical and numerical calculations of the self-

capacitance. (b) The calculated electrostatic potential surface for the charged sphere in a 

computational box. (c) A comparison between the analytical results and numerical calculations.  

 

To evaluate the accuracy of the numerical calculations of classical capacitance on a 

rectangular grid we calculate the self-capacitance of a charged metallic sphere and compare it 

with the analytical results. The self-capacitance of a sphere of a radius R is given by the 

expression, 𝐶 = 4𝜋𝜀0𝑅. This is an exact expression for the sphere in infinite space. If, 



16 (16) 

 

instead, the integration of the electric field is limited to a spherical region of the radius L as 

illustrated in Figure S5, the corresponding analytical expression reads,  

𝐶 = 4𝜋𝜀0
𝐿∗𝑅

𝐿−𝑅
.   (S1) 

In numerical calculation a charged metallic sphere is placed in the center of a cubic simulation 

box L×L×L as illustrated in Figure S5a, with the size L=4 Å, and a uniform cubic 3D grid with 

the step d = 0.2 Å in each direction. 

Numerical simulations were performed in several steps: 

1) Potential of the metallic sphere was extracted using Mulfiwfn software package3, designed 

to supplement Gaussian16 calculations. Electric field was calculated from the potential 

according to 𝐸⃗ = −𝛻𝑉. (Note that in Gaussian calculation the metallic sphere was represented 

by a point charge where the electric field at each grid point inside the sphere was set to zero as 

illustrated in Figure S10a in order to account for the metallic character of the sphere.)  

2) Numerical integration of the |E|2 in the simulation box was performed on the square grid and 

the classical capacitance is calculated according to Equation 11. 

Figure S10c shows a comparison between the numerical calculations and analytical 

expression given by Equation S1, where the self-capacitance is calculated for different sizes 

of the sphere. A good agreement between the numerical calculations and analytical results 

provides a justification for the chosen numerical method and the grid size of the 

computational box. 
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