Supplementary Information

In situ molten phase assisted self-healing for maintaining fiber's morphology in conversion from melamine diborate to boron nitride.

Chunzhi Wu^a, Bing Wang^a*, Nan Wu^b, Cheng Han^a, Xiaoshan Zhang^a, Yingde Wang^a*

^a Science and Technology on Advanced Ceramic Fibers and Composites, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, PR China.

^b Department of Materials Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, PR China.

To study structural transformation of H_3BO_3 and $C_3N_6H_6$ separately, they were heated to 150 °C, 200 °C, 400 °C and immediately cooling down to accord with TG procedure. The XRD was used to characterize the H_3BO_3 and $C_3N_6H_6$ and their heated products. As shown in Figure S1a, boric acid (H_3BO_3 , ICSD PDF#73-2158) converted into metaboric acid (including α -HBO₂, ICSD PDF#77-0425 and β -HBO₂, ICSD PDF#76-0746) after treated at 150 °C, and in further totally converted into glass boron oxide (g-B₂O₃, ICSD PDF#06-0297) at 200 °C. The peaks of sassolite (ICSD PDF#30-0199) could be attributed to the moisture absorption of B₂O₃. In Figure S1b, the crystallinity of melamine became slightly poorer but remained $C_3N_6H_6$ (ICSD PDF#39-1950) molecule stable when heated up to 200 °C and condensed into melem^[1] when up to 400 °C.

Figure S1 (a) XRD pattern of boric acid and its heating products and (b) melamine and its heating products after treated at 150 °C, 200 °C, 400 °C.

To further confirm the structural evolution, ¹³C nuclear magnetic resonance (NMR) spectrum was applied. All the ¹³C NMR spectrum was calibrated according to the septet peaks of DMSO-d₆ solvent. As shown in figure S2, the chemical shift δ of samples were 167.33 ppm (C₃N₆H₆ in DMSO-d₆), 165.23 ppm (C₃N₆H₆·2H₃BO₃ in DMSO-d₆), 164.93 ppm (M·2B₁₅₀ in DMSO-d₆), 164.73 ppm (M·2B₂₀₀ in DMSO-d₆), respectively. It varied from pure melamine to M·2B and to M·2B₁₅₀, which may result from circumstance variation of C₃N₆H₆ molecule. And the difference of C NMR spectra between M·2B₁₅₀ and M·2B₂₀₀ reveals the different structure, as depicted in FTIR, seemed to change from the (melamine)C-NH₂ to the C-O-B.

Figure S2 ¹³C NMR spectra for melamine, $C_3N_6H_6 \cdot 2H_3BO_3$ (M·2B) and its heated products after treated at 200 °C. 400 °C.

Figure S3 Photographs of the heated products of original melamine: remained $C_3N_6H_6$ at 150 °C and 200 °C, condensed into melem at 400 °C.

Figure S4 Solubility of the thermal derivatives of M·2B (heated at 150 °C, 200 °C, 400 °C, 550 °C) in solvents after 6 hours (a) ethylene glycol (EG); (b) ethanol (EA).

Figure S5 SEM images of the corroded $M \cdot 2B_T$ fibers by EA and EG for 1 minute: (a) $M \cdot 2B_{150}$, (b) $M \cdot 2B_{200}$ (c) $M \cdot 2B_{400}$ after immersed in ethanol (EA); (d) $M \cdot 2B_{150}$, (e) $M \cdot 2B_{200}$, (f) $M \cdot 2B_{400}$ after immersed in ethylene glycol (EG). The insets are the corresponding diagram illustration.

Reference

[1] H.B. Zheng, W. Chen, H. Gao, Y.Y. Wang, H.Y. Guo, S.Q. Guo, Z.L. Tang, J.Y. Zhang, Journal of Materials Chemistry C 5 (2017) 10746–10753.