Electronic Supporting Information

Construction of novel and efficient hafnium catalysts using naturally existing tannic acid for Meerwein-Ponndorf-Verley Reduction

Xiaolu Wang¹, Jianxiu Hao¹, Lijuan Deng², Hongye Zhao¹, Quansheng Liu¹, Na Li¹, Runxia He¹, Keduan Zhi¹, Huacong Zhou^{1*}.

¹ College of Chemical Engineering, Inner Mongolia University of Technology; Inner Mongolia Key Laboratory of High-Value Functional Utilization of Low Rank Carbon Resources, Hohhot 010051, Inner Mongolia, China.

² Hohhot No. 2 High School, Hohhot 010010, Inner Mongolia, China

* Corresponding author E-mail: <u>hczhou@imut.edu.cn</u>

Contents

Product analysis
Figure S1 Element mapping images of Hf-TA
Table S1 CTH reaction of FD to produce FA catalyzed by various catalysts.
Figure S2 SEM image and TEM image of the recycled Hf-TA catalyst after 10 cycles4
Figure S3 XRD patterns and nitrogen adsorption desorption isotherms of the fresh Hf-TA and
recycled Hf-TA catalyst after 10 cycles
Table S2 Surface area, volume and Hafnium content of different catalysts.
Figure S4 XPS spectra of Hf 4f and O1s in the fresh Hf-TA and recycled Hf-TA catalyst after 10
cycles5
Figure S5 NH ₃ -TPD spectra of Hf-TA
References

Product analysis

FD (furfuraldehyde), FA (furfuryl alcohol), and other liquid substrates conversion and products yield were quantitatively analysed by gas chromatography (GC, Techccomp 7900) with a FID (flame ionization detector) using decane as the GC internal standard. The products were identified by GC-MS (Agilent 7890B-7000D). The conversion of substrates (e.g., FD) and yields of products (e.g., FA) were calculated based on standard curves ($R^2 \ge 0.9994$) of corresponding commercial samples in five gradient concentrations along with a certain amount of internal standard (decane).^{1, 2} Substrate conversion (Conv, %), product yield (Yield, %) and selectivity (Sel, %) were calculated using the following equations:

Conv (%) = $[1-(mole of substrate after reaction) / (mole of initial substrate)] \times 100 %$ Yield (%) = (mole of the obtained product) / (the theoretical mole of the product under total conversion of the initial substrate) × 100 %

Sel (%) = (product yield) / (substrate conversion) $\times 100$ %

Figure S1 Element mapping images of Hf-TA: (a) scanning range of the EDS mapping, (b) Hf element, (c) C element, and (d) O element.

		2-PrOH catalyst	ОН	
Entry	Catalyst type	Conv. (%)	Yield. (%)	Sel. (%)
1	Hf-TA	97.2	96.2	98.9
2	Zr-TA	62.6	45.4	72.5
3	Al-TA	19.4	7.8	40.2
4	Cr-TA	14.7	4.1	27.9
5	Sn-TA	12.1	6.8	56.2
6	Fe-TA	4.9	4.3	87.7
7	Cu-TA	4.8	3.3	68.8
8	HfCl ₄	60.3	3.6	5.9
9	HfO ₂	20.0	4.0	20.0
10	Hf (OH) ₄	4.0	1.0	25.0

Table S1 CTH reaction of FD to produce FA catalyzed by various catalysts.^a

^a Typical reaction conditions were as follows except otherwise stated in the table: FD 1 mmol, 2-PrOH 5 mL, catalyst 200 mg, reaction temperature 70 °C, reaction time 5 h

Figure S2 SEM image (a) and TEM image (b) of the recycled Hf-TA catalyst after 10 cycles.

Figure S3 XRD patterns (a) and nitrogen adsorption desorption isotherms (b) of the fresh Hf-TA and recycled Hf-TA catalyst after 10 cycles.

Catalyst	$S_{BET}(m^{2}\!/~g)^{\ a}$	$V_{pore} (cm^3/g)^b$	D _{mean} (nm) ^c	$P_{size} (nm)^d$	ICP_{Hf} (%) ^e
Fresh Hf-TA	87.8	0.2	12.9	68.4	35.3
Reused Hf-TA ^f	66.0	0.2	17.6	90.9	34.5

 Table S2 Surface area, volume and Hf content of different catalysts.

^a S_{BET}: BET surface area was obtained from N₂ adsorption isotherm. ^b V _{pore}: Volume of pores. ^c D _{mean}: Adsorption average pore diameter. ^d P _{size}: Average particle size. ^e ICP _{Hf}: ICP-OES detected hafnium content. ^fHf-TA: Used Hf-TA after 10 cycles.

Figure S4 XPS spectra of Hf 4f (a) and O1s (b) in the fresh Hf-TA and recycled Hf-TA catalyst after 10 cycles.

Figure S5 NH₃-TPD spectra of Hf-TA. Due to the decomposition temperature of the as-prepared catalyst was about 250 °C, the test could conduct under the temperature lower than 250 °C.

References

- 1. H. Li, T. Yang and Z. Fang, *Applied Catalysis B: Environmental*, 2018, 227, 79-89.
- 2. W. Wu, Y. Li, H. Li, W. Zhao and S. Yang, *Catalysts*, 2018, **8**, 264-278.