Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Strategy to Design a Smart Photocleavable and pH Sensitive Chitosan Based Hydrogel Through a Novel Crosslinker: A Potential Vehicle for Controlled Drug Delivery

Safiya Nisar, a Ashiq Hussain Pandit, b Li-Fang Wang, *c,d Sunita Rattan*a

^aAmity Institute of Applied Sciences, Amity University, Sector-125, Noida 201303, India.

^bMaterials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi-110025- India

^cDepartment of Medicinal and Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan.

^dDepartment of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan

^aSafiya Nisar

Email: snisar41@gmail.com

^bAshiq Hussain Pandit

Email: panditashiq7@gmail.com

*c,dLi-Fang Wang

Email: lfwang@kmu.edu.tw

*aSunita Rattan

Email: srattan@amity.edu

*Corresponding Authors

Sunita Rattan

Li-Fang Wang

Supplementary Information

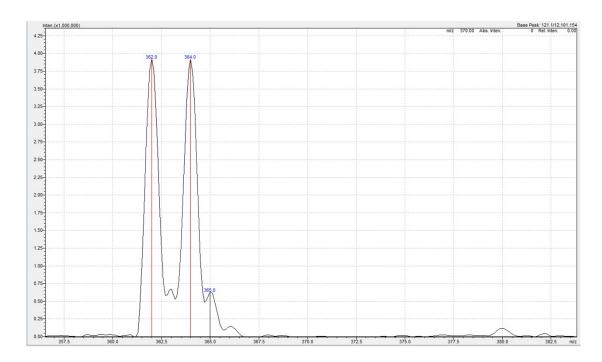


Fig. S1. LCMS spectrum of CHO-ONB-Br

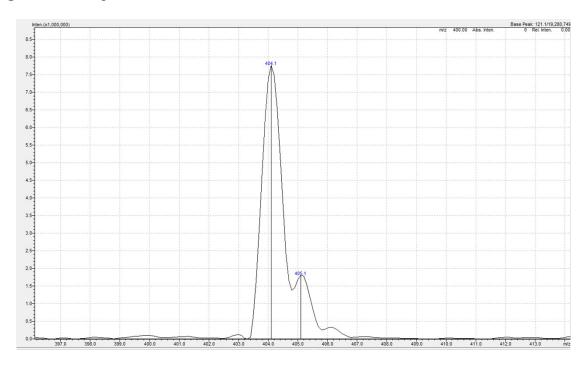


Fig. S2. LCMS spectrum of CHO-ONB-CHO

LCMS data was analyzed on Schimadzu, LCMS 8045 and the samples were dissolved in THF (1 $mgml^{-1}$). UV spot light source was used.

The LCMS data for -CHO-ONB-Br depicted the presence of characteristic bromine isotopic peaks 36 at 364 and 362 of equal intensity and the peaks for -CHO-ONB-CHO was confirmed at M/z 404.1, 405.1.