Supporting information for

Improved synthesis and application of conjugation-amenable polyols from D-mannose

Ida Mattsson, Ruzal Sitdikov, Andreas C. M. Gunell, Tiina Saloranta-Simell, Manu Lahtinen and Reko Leino*

Contents

Synthesis and NMR data of (2 <i>R</i> ,3 <i>R</i> ,4 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-non-8-ene-1,2,3,4,5,6-hexaol (1)
Optimization of synthesis of (2 <i>R</i> ,3 <i>R</i> ,4 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-non-8-yne-1,2,3,4,5,6-hexaol (2)
NMR spectra of (2R,3R,4R,5R,6S)-non-8-yne-1,2,3,4,5,6-hexaol (2)
Synthesis and NMR spectra of (2R,3R,4R,5R,6S)-9-(propylthio)nonane-1,2,3,4,5,6-hexaol (3)
Synthesis and NMR spectra of (2 <i>R</i> ,2' <i>R</i> ,3 <i>R</i> ,3' <i>R</i> ,4 <i>R</i> ,4' <i>R</i> ,5 <i>R</i> ,5' <i>R</i> ,6 <i>S</i> ,6' <i>S</i>)-9,9'-(propane-1,3- diylbis(sulfanediyl))bis(nonane-1,2,3,4,5,6-hexaol) (4)7
Synthesis and NMR spectra of (2R,3R,4R,5R,6S)-9-(benzylthio)nonane-1,2,3,4,5,6-hexaol (5)9
Synthesis and NMR spectra of S-((4S,5R,6R,7R,8R)-4,5,6,7,8,9-hexahydroxynonyl)-L-cysteine (6). 11
Synthesis and NMR spectra of (2R,3R,4R,5R,6S)-9-(cyclohexylthio)nonane-1,2,3,4,5,6-hexaol (7). 13
Synthesis and NMR spectra of (2 <i>R</i> ,3 <i>R</i> ,4 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-9-((2-(2-(2- hydroxyethoxy)ethoxy)ethyl)thio)nonane-1,2,3,4,5,6-hexaol (8)
Synthesis and NMR spectra of 2,2-bis(((3-(((4 <i>S</i> ,5 <i>R</i> ,6 <i>R</i> ,7 <i>R</i> ,8 <i>R</i>)-4,5,6,7,8,9 hexahydroxynonyl)thio)propanoyl)oxy)methyl)propane-1,3-diylbis(3-(((4 <i>S</i> ,5 <i>R</i> ,6 <i>R</i> ,7 <i>R</i> ,8 <i>R</i>)- 4,5,6,7,8,9-hexahydroxynonyl)thio)propanoate) (9)17
UV-Reactor setup
Synthesis and NMR spectra of (2 <i>R</i> ,3 <i>R</i> ,4 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-7-(1-(2-hydroxyethyl)-1 <i>H</i> -1,2,3-triazol-4- yl)heptane-1,2,3,4,5,6-hexaol (10)20
Synthesis and NMR spectra of (2 <i>R</i> ,3 <i>R</i> ,4 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-7-(1-benzyl-1 <i>H</i> -1,2,3-triazol-4-yl)- heptane- 1,2,3,4,5,6-hexaol (11)
Synthesis and NMR spectra of (2 <i>R</i> ,3 <i>R</i> ,4 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-7-(1-(2-(2-(2-hydroxyethoxy)ethoxy)ethyl)-1 <i>H</i> - 1,2,3-triazol-4-yl)heptane-1,2,3,4,5,6-hexaol (12)
Synthesis and NMR spectra of (2 <i>R</i> ,3 <i>R</i> ,4 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-7-(1-(9 <i>H</i> -fluoren-9-yl)-1H-1,2,3-triazol-4- yl)heptane-1,2,3,4,5,6-hexaol (13)26
Crystal data of (2R,3R,4R,5R,6S)-7-(1-benzyl-1H-1,2,3-triazol-4-yl)- heptane-1,2,3,4,5,6-hexaol (11)

Synthesis and NMR data of (2*R*,3*R*,4*R*,5*R*,6*S*)-non-8-ene-1,2,3,4,5,6-hexaol (1)

D-Mannose (5 g, 27.8 mmol, 1 eq), tin powder (6.7 g, 56.4 mmol, 2 eq) and allyl bromide (10 g, 83.2 mmol, 3 eq) were dissolved in 550 ml EtOH and 50 ml distilled H_2O . The reaction mixture was heated to 60 °C and was stirred overnight. The mixture was allowed to cool to room temperature and was neutralized with 5 M NaOH (aq). The mixture was filtered through Celite. The filtrate was evaporated until approximately 80 ml solution remained. The solution was left in frigde overnight to yield 2.96 g white crystals (48 % yield).

¹H-NMR (500.20 MHz, DMSO, 25 °C): δ = 5.84 (dddd, $J_{8,7a}$ = 6.6 Hz, $J_{8,7b}$ = 7.5 Hz, $J_{8,9trans}$ = 17.2 Hz, $J_{8,9cis}$ = 10.2 Hz, 1 H, H-8), 5.04 (dddd, $J_{9trans,7a}$ = -1.5 Hz, $J_{9trans,7b}$ = -1.4 Hz, $J_{9trans,9cis}$ = -2.4 Hz, 1 H, H-9trans), 4.98 (dddd, $J_{9cis,7a}$ = 1.1 Hz, $J_{9cis,7b}$ = 1.2 Hz, 1 H, H-9cis), 4.38 (d, $J_{0H2,2}$ = 5.6 Hz, 1 H, OH-2), 4.32 (t, $J_{0H1,1a}$ = $J_{0H2,2}$ = 5.6 Hz, 1 H, OH-1), 4.09 (d, $J_{0H4,4}$ = 7.2 Hz, 1 H, OH-4), 4.08 (d, $J_{0H5,5}$ = 7.2 Hz, 1 H, OH-5), 4.08 (d, $J_{0H6,6}$ = 7.8 Hz, 1 H, OH-6), 4.03 (d, $J_{0H3,3}$ = 7.7 Hz, 1 H, OH-3), 3.74 (dddd, $J_{6,5}$ = 1.6 Hz, $J_{6,7a}$ = 7.7 Hz, $J_{6,7b}$ = 5.9 Hz, 1 H, H-6), 3.96 (ddd, $J_{4,3}$ < 0.5 Hz, $J_{4,5}$ = 9.3 Hz, 1 H, H-4), 3.61 (ddd, $J_{1a,1b}$ = -11.0 Hz, $J_{1a,2}$ = 3.6 Hz, 1 H, H-1a), 3.56 (ddd, $J_{3,2}$ = 8.3 Hz, 1 H, H-3), 3.47 (dddd, $J_{2,1b}$ = 6.1 Hz, 1 H, H-2), 3.38 (ddd, 1 H, H-1b), 3.29 (ddd, 1 H, H-5), 2.23 (ddddd, $J_{7a,7b}$ = -14.0 Hz, 1 H, H-7a), 2.20 (ddddd, 1 H, H-7b) ppm.

¹³C-NMR (125.8 MHz, DMSO, 25 °C): δ = 137.2 (C-8), 116.4 (C-9), 72.0 (C-2), 71.4 (C-5), 70.2 (C-3), 69.8 (C-6), 69.1 (C-4), 64.4 (C-1), 39.0 (C-7).

Entry	Deviation from standard conditions ^a	Conversion of mannose ^b (%)
1	None	69
2	Reaction temperature 80 °C	13
3	Reaction temperature 65 °C	24
4	Indium powder instead of Sn, reaction temperature 80 °C	77 ^c
5	4 days reaction time at room temperature	57
6	K_2CO_3 and $SnBu_2(O)$ instead of Sn powder	No reaction
7	1 eq. of PrBr, then 1 eq. added after 12 h.	39
8	Solvent EtOH/H ₂ O (9/1)	No reaction
9	Reaction conducted at room temperature	10
10	Solvent DMF	24
11	Solvent THF/H ₂ O (9/1)	No reaction
12	Solvent EtOH/H ₂ O (9.5/0.5), reaction temperature 40 °C	1
13	Solvent EtOH/H ₂ O (9.5/0.5), reaction temperature 50 °C	9

 Table S1. Investigated optimization parameters.

^a Standard conditions: Sn powder, AcCN/H₂O 9/1, 60 °C, 24 h; ^b Determined by ¹H NMR spectroscopy; ^c Increased side product formation, separation difficulties.

NMR spectra of (2*R*,3*R*,4*R*,5*R*,6*S*)-non-8-yne-1,2,3,4,5,6-hexaol (2) ¹H-NMR spectrum of (2*R*,3*R*,4*R*,5*R*,6*S*)-non-8-yne-1,2,3,4,5,6-hexaol (2)

Synthesis and NMR spectra of (2*R*,3*R*,4*R*,5*R*,6*S*)-9-(propylthio)nonane-1,2,3,4,5,6-hexaol (**3**)

Allylated D-mannose (100 mg, 0.45 mmol, 1 eq.), propanethiol (84 μ l, 0.9 mmol, 2 eq.) and 2,2dimethoxy-2-phenylacetophenone (5.8 mg, 0.023 mmol, 0.05 eq.) were dissolved in 10 ml MeOH:H₂O 1:1. The reaction mixture was irradiated with 365 nm UV-light for 1 h. The mixture was subsequently evaporated to dryness and the solids were stirred in 3 ml hexane for 1 h before centrifugation, decantation and drying *in vacuo*. The reaction yielded 125 mg of off-white powder (93 %).

Synthesis and NMR spectra of (2*R*,2'*R*,3*R*,3'*R*,4*R*,4'*R*,5*R*,5'*R*,6*S*,6'*S*)-9,9'-(propane-1,3-diylbis(sulfanediyl))bis(nonane-1,2,3,4,5,6-hexaol) (**4**)

Allylated D-mannose (100 mg, 0.45 mmol, 2.1 eq.), propanedithiol (22 μ l, 0.215 mmol, 1 eq.) and 2,2dimethoxy-2-phenylacetophenone (5.5 mg, 0.0215 mmol, 0.1 eq.) were dissolved in 10 ml MeOH:H₂O 1:1. The reaction mixture was irradiated with 365 nm UV-light for 1 h. The mixture was subsequently evaporated to dryness and the solids were stirred in 2 ml water to remove excess allylated D-mannose for 30 min before centrifugation, decantation and drying *in vacuo*. The reaction yielded 101 mg of offwhite powder (85 %). ¹H-NMR spectrum of (2*R*,2'*R*,3*R*,3'*R*,4*R*,4'*R*,5*R*,5'*R*,6*S*,6'*S*)-9,9'-(propane-1,3-diylbis(sulfanediyl)) bis(nonane-1,2,3,4,5,6-hexaol) (**4**)

¹³C-NMR spectrum of (2*R*,2'*R*,3*R*,3'*R*,4*R*,4'*R*,5*R*,5'*R*,6*S*,6'*S*)-9,9'-(propane-1,3-diylbis(sulfanediyl)) bis(nonane-1,2,3,4,5,6-hexaol) (**4**)

Synthesis and NMR spectra of (2*R*,3*R*,4*R*,5*R*,6*S*)-9-(benzylthio)nonane-1,2,3,4,5,6-hexaol (**5**)

Allylated D-mannose (100 mg, 0.45 mmol, 1 eq.), phenylmethanethiol (105 μ l, 0.9 mmol, 2 eq.) and 2,2-dimethoxy-2-phenylacetophenone (5.8 mg, 0.023 mmol, 0.05 eq.) were dissolved in 10 ml MeOH:H₂O 1:1 and 4 ml DMF in order to improve solubility of the thiol. The reaction mixture was irradiated with 365 nm UV-light for 1 h. The mixture was subsequently evaporated to dryness and the solids were stirred in 3 ml toluene for 1 h before centrifugation, decantation and drying *in vacuo*. The reaction yielded 126 mg of off-white powder (81 %).

¹³C-NMR spectrum of (2*R*,3*R*,4*R*,5*R*,6*S*)-9-(benzylthio)nonane-1,2,3,4,5,6-hexaol (5)

Synthesis and NMR spectra of *S*-((4*S*,5*R*,6*R*,7*R*,8*R*)-4,5,6,7,8,9-hexahydroxynonyl)-L-cysteine (**6**)

Allylated D-mannose (100 mg, 0.45 mmol, 1 eq.), L-cysteine (55 mg, 0.45 mmol, 1 eq.) and 2,2dimethoxy-2-phenylacetophenone (5.8 mg, 0.023 mmol, 0.05 eq.) were dissolved in 10 ml MeOH:H₂O 1:1. The reaction mixture was irradiated with 365 nm UV-light for 1 h. The mixture was subsequently evaporated to dryness and the solids were stirred in 3 ml acetone before centrifugation and decantation. The washing procedure was repeated with 0.5 ml distilled water, followed by centrifugation, decantation and drying *in vacuo*. The reaction yielded 119 mg of white powder (77 %).

¹H-NMR spectrum of S-((4S,5R,6R,7R,8R)-4,5,6,7,8,9-hexahydroxynonyl)-L-cysteine (6)

Synthesis and NMR spectra of (2*R*,3*R*,4*R*,5*R*,6*S*)-9-(cyclohexylthio)nonane-1,2,3,4,5,6-hexaol (**7**)

Allylated D-mannose (100 mg, 0.45 mmol, 1 eq.), cyclohexanethiol (110 μ l, 0.9 mmol, 2 eq.) and 2,2dimethoxy-2-phenylacetophenone (5.8 mg, 0.023 mmol, 0.05 eq.) were dissolved in 10 ml MeOH:H₂O 1:1 and 4 ml DMF in order to improve solubility of the thiol. The reaction mixture was irradiated with 365 nm UV-light for 1 h. The mixture was subsequently evaporated to dryness and the solids were stirred in 3 ml hexane for 1 h before centrifugation, decantation and drying *in vacuo*. The reaction yielded 138 mg of off-white powder (91 %).

¹H-NMR spectrum of (2*R*,3*R*,4*R*,5*R*,6*S*)-9-(cyclohexylthio)nonane-1,2,3,4,5,6-hexaol (7)

Synthesis and NMR spectra of (2*R*,3*R*,4*R*,5*R*,6*S*)-9-((2-(2-(2-hydroxyethoxy)ethoxy)ethyl)thio)nonane-1,2,3,4,5,6-hexaol (8)

Allylated D-mannose (100 mg, 0.45 mmol, 1 eq.), 2-[2-(2-mercaptoethoxy)ethoxy]ethanol (150 mg, 0.9 mmol, 2 eq.) and 2,2-dimethoxy-2-phenylacetophenone (5.8 mg, 0.023 mmol, 0.05 eq.) were dissolved in 10 ml MeOH:H₂O 1:1. The reaction mixture was irradiated with 365 nm UV-light for 1 h. The mixture was subsequently evaporated to dryness and the solids were stirred in 3 ml ethyl acetate for 1 h before centrifugation, decantation and drying *in vacuo*. The reaction yielded 198 mg of off-white powder (65 %).

¹H-NMR spectrum of (2*R*,3*R*,4*R*,5*R*,6*S*)-9-((2-(2-(2-hydroxyethoxy)ethoxy)ethyl)thio)nonane-1,2,3,4,5,6-hexaol (**8**)

1,2,3,4,5,6-hexaol (8)

Synthesis and NMR spectra of 2,2-bis(((3-(((4*S*,5*R*,6*R*,7*R*,8*R*)-4,5,6,7,8,9 hexahydroxynonyl)thio)propanoyl)oxy)methyl)propane-1,3-diylbis(3-(((4*S*,5*R*,6*R*,7*R*,8*R*)-4,5,6,7,8,9-hexahydroxynonyl)thio)propanoate) (**9**)

Allylated D-mannose (100 mg, 0.45 mmol, 5 eq.), pentaerythritol tetrakis(3-mercaptopropionate) (44 mg, 0.09 mmol, 1 eq.) and 2,2-dimethoxy-2-phenylacetophenone (5.8 mg, 0.023 mmol, 0.25 eq.) were dissolved in 10 ml MeOH:H₂O 1:1. The reaction mixture was irradiated with 365 nm UV-light for 1 h. The mixture was subsequently evaporated to dryness and the solids were stirred in 3 ml ethyl acetate and 1 ml distilled water for 1 h before centrifugation and decantation and drying *in vacuo*. The reaction yielded 90 mg of off-white powder (73 %).

¹H-NMR spectrum of 2,2-bis(((3-(((4*S*,5*R*,6*R*,7*R*,8*R*)-4,5,6,7,8,9 hexahydroxynonyl)thio)propanoyl)oxy)methyl)propane-1,3-diylbis(3-(((4*S*,5*R*,6*R*,7*R*,8*R*)-4,5,6,7,8,9hexahydroxynonyl)thio)propanoate) (**9**)

¹³C-NMR spectrum of 2,2-bis(((3-(((4*S*,5*R*,6*R*,7*R*,8*R*)-4,5,6,7,8,9

hexahydroxynonyl)thio)propanoyl)oxy)methyl)propane-1,3-diylbis(3-(((4*S*,5*R*,6*R*,7*R*,8*R*)-4,5,6,7,8,9-hexahydroxynonyl)thio)propanoate) (**9**)

ppm

UV-Reactor setup

Figure S1. UV-Reactor setup.

Synthesis and NMR spectra of (2*R*,3*R*,4*R*,5*R*,6*S*)-7-(1-(2-hydroxyethyl)-1*H*-1,2,3-triazol-4-yl)heptane-1,2,3,4,5,6-hexaol (**10**)

Propargylated D-mannose (20 mg, 0.09 mmol, 1 eq.), azidoethanol (15 mg, 0.18 mmol, 2 eq.), copper(II)sulfate (1.4 mg, 0.009, 0.1 eq.) and sodium ascorbate (3.6 mg, 0.018 mmol, 0.2 eq.) were dissolved in 5 ml distilled water. The solution was heated to 55 °C and stirred at that temperature overnight. The solution was evaporated to near dryness, and 2 ml ethyl acetate was added to precipitate the solids. The solids were washed with 0.5 ml distilled H₂O and were separated from the liquid by centrifugation and decantation, followed by drying under reduced pressure. The reaction yielded 13 mg of white powder (47 %).

¹³C-NMR spectrum of (2*R*,3*R*,4*R*,5*R*,6*S*)-7-(1-(2-hydroxyethyl)-1*H*-1,2,3-triazol-4-yl)heptane-1,2,3,4,5,6-hexaol (**10**)

Synthesis and NMR spectra of (2*R*,3*R*,4*R*,5*R*,6*S*)-7-(1-benzyl-1*H*-1,2,3-triazol-4-yl)-heptane-1,2,3,4,5,6-hexaol (**11**)

Propargylated D-mannose (20 mg, 0.09 mmol, 1 eq.), azidomethylbenzene (24 mg, 0.18 mmol, 2 eq.), copper(II)sulfate (1.4 mg, 0.009, 0.1 eq.) and sodium ascorbate (3.6 mg, 0.018 mmol, 0.2 eq.) were dissolved in 5 ml H₂O:THF 4:1. The solution was heated to 55 °C and stirred at that temperature overnight. The solution was evaporated to near dryness, and 2 ml toluene was added to remove residual azide. The solids were washed with 0.5 ml distilled H₂O and were separated from the liquid by centrifugation and decantation, followed by drying under reduced pressure. The reaction yielded 18 mg of off-white powder (56 %).

¹H-NMR spectrum of (2*R*,3*R*,4*R*,5*R*,6*S*)-7-(1-benzyl-1*H*-1,2,3-triazol-4-yl)heptane-1,2,3,4,5,6-hexaol (**11**)

¹³C-NMR spectrum of (2*R*,3*R*,4*R*,5*R*,6*S*)-7-(1-benzyl-1*H*-1,2,3-triazol-4-yl)heptane-1,2,3,4,5,6-hexaol (**11**)

Synthesis and NMR spectra of (2*R*,3*R*,4*R*,5*R*,6*S*)-7-(1-(2-(2-(2-hydroxyethoxy)ethoxy)ethyl)-1*H*-1,2,3-triazol-4-yl)heptane-1,2,3,4,5,6-hexaol (**12**)

Propargylated D-mannose (20 mg, 0.09 mmol, 1 eq.), 2-[2-(2-azidoethoxy)ethoxy]ethanol (31.5 mg, 0.18 mmol, 2 eq.), copper(II)sulfate (1.4 mg, 0.009, 0.1 eq.) and sodium ascorbate (3.6 mg, 0.018 mmol, 0.2 eq.) were dissolved in 5 ml distilled water. The solution was heated to 55 °C and stirred at that temperature overnight. The solution was evaporated to near dryness, and 2 ml ethyl acetate was added to remove residual azide. The solids were washed with 0.5 ml distilled H₂O and were separated from the liquid by centrifugation and decantation, followed by drying under reduced pressure. The reaction yielded 15 mg of off-white powder (43 %).

¹H-NMR spectrum of (2*R*,3*R*,4*R*,5*R*,6*S*)-7-(1-(2-(2-(2-hydroxyethoxy)ethoxy)ethyl)-1*H*-1,2,3-triazol-4-yl)heptane-1,2,3,4,5,6-hexaol (**12**)

¹³C-NMR spectrum of (2*R*,3*R*,4*R*,5*R*,6*S*)-7-(1-(2-(2-(2-hydroxyethoxy)ethoxy)ethyl)-1*H*-1,2,3-triazol-4-yl)heptane-1,2,3,4,5,6-hexaol (**12**)

Synthesis and NMR spectra of (2*R*,3*R*,4*R*,5*R*,6*S*)-7-(1-(9*H*-fluoren-9-yl)-1H-1,2,3-triazol-4-yl)heptane-1,2,3,4,5,6-hexaol (**13**)

Propargylated D-mannose (20 mg, 0.09 mmol, 1 eq.), 9-azido-9*H*-fluorene (37 mg, 0.18 mmol, 2 eq.), copper(II)sulfate (1.4 mg, 0.009, 0.1 eq.) and sodium ascorbate (3.6 mg, 0.018 mmol, 0.2 eq.) were dissolved in 5 ml DMF:H₂O 4:1. The solution was heated to 55 °C and stirred at that temperature overnight. The solution was evaporated to near dryness, and 2 ml toluene was added to remove residual azide. The solids were washed with 0.5 ml distilled H₂O and were separated from the liquid by centrifugation and decantation, followed by drying under reduced pressure. The reaction yielded 19 mg of off-white powder (49 %).

¹H-NMR spectrum of (2*R*,3*R*,4*R*,5*R*,6*S*)-7-(1-(9*H*-fluoren-9-yl)-1H-1,2,3-triazol-4-yl)heptane-1,2,3,4,5,6-hexaol (**13**)

¹³C-NMR spectrum of (2*R*,3*R*,4*R*,5*R*,6*S*)-7-(1-(9*H*-fluoren-9-yl)-1H-1,2,3-triazol-4-yl)heptane-1,2,3,4,5,6-hexaol (**13**)

Crystal data of (2*R*,3*R*,4*R*,5*R*,6*S*)-7-(1-benzyl-1*H*-1,2,3-triazol-4-yl)heptane-1,2,3,4,5,6-hexaol (**11**)

Identification code	Compound 11
CCD code	1956436
Empirical formula	$C_{16}H_{23}N_3O_6$
Formula weight	353.37
Crystal system	triclinic
Space group	P1
a/Å	4.7849(5)
b/Å	5.3125(5)
c/Å	17.3017(15)
α/°	83.212(8)
β/°	87.407(7)
γ/°	85.031(8)
Volume/Å ³	434.81(7)
Z	1
$\rho_{calc} g/cm^3$	1.350
µ/mm⁻¹	0.873
F(000)	188.0
Crystal size/mm ³	0.096 × 0.047 × 0.029
20 range for data collection/°	5.146 to 153.184
Reflections collected	4839
Independent reflections	2541 [R_{int} = 0.0285, R_{σ} = 0.0469]
Data/restraints/parameters	2541/3/268
Goodness-of-fit on F ²	1.055
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0365$, $wR_2 = 0.0882$
Final R indexes [all data]	R ₁ = 0.0437, wR ₂ = 0.0922
Largest diff. peak/hole / e Å ⁻³	0.23/-0.21

 Table S2. Crystal data and refinement parameters of compound 11.

D	н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
01	H1	O3 ¹	0.82	2.02	2.754(3)	149.4
02	H2	01 ²	0.82	1.91	2.717(3)	168.0
03	H3	O4 ³	0.82	1.88	2.690(3)	172.0
04	H4	O2 ⁴	0.82	1.97	2.720(3)	151.3
05	H5	O6 ³	0.82	1.90	2.713(3)	174.6
06	H6	N9 ¹	0.82	2.08	2.833(4)	152.8
C12	H12	N10 ¹	0.93	2.25	3.181(4)	177.1

 Table S3.
 Hydrogen bonds in compound 11.

¹+X,-1+Y,+Z; ²-1+X,+Y,+Z; ³1+X,+Y,+Z; ⁴+X,1+Y,+Z

Figure S2. Molecular packing and hydrogen bonding network observed in the structure along *a*-axis in compound **11**. Thermal displacement ellipsoids are displayed at the 50% probability level.