Electronic Supplementary Information

B12-containing Volleyball-like Molecule for Hydrogen Storage

Jing-Jing Guo, a Hui-Yan Zhao, a Jing Wang, a and Ying Liu * a,b

^a Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang

050024, Hebei, China

^b National Key Laboratory for Materials Simulation and Design, Beijing 100083, China

E-mail: yliu@hebtu.edu.cn

Fig. S1. The construction process of the core-shell volleyball-like $B_{12}@Li_{20}Al_{12}$. Here, 12 Al atoms (magenta) are located above the center of 12 triangles of the B_{12} icosahedron (pink), then every 2 Al atoms connect with 8 Li atoms (purple). The shell structure is like a volleyball consisting of six Al₂Li₈ subunits.

Fig. S2. (a) The optimized structures of the core-adjusted $B_{12}@Li_{20}Al_{12}$, and (b) low-energy $B_{12}@Li_{20}Al_{12}$ during MD simulations.

Fig. S3. Several vibrational frequency modes of the core-shell B_{12} @Li₂₀Al₁₂. To be specific, (*a*)-(*e*) correspond to the vibrational frequency modes for the peaks of 91.94 cm⁻¹, 157.87 cm⁻¹, 280.66 cm⁻¹, 355.68 cm⁻¹ and 558.82 cm⁻¹ respectively; (*f*)-(*g*) correspond to the vibrational frequency modes for the highest and lowest frequencies, respectively.

Fig. S4. Specific steps of the MD simulations at initial temperatures (T_i) of 1600 K, 1800 K, 2000 K and 2200 K for the core-shell B₁₂@Li₂₀Al₁₂. The corresponding effective temperatures (T_e) are also listed.

Fig. S5. Isosurface of the localized orbital locator (LOL) and the electron localization function (ELF) for the $B_{12}@Li_{20}Al_{12}$ viewed from the top of the Al_2Li_8 subunit. The isovalues are 0.3 $e/Å^3$ and 0.7 $e/Å^3$ respectively.

Fig. S6. Several possible locations of absorbed H_2 molecules. Specifically, T_1 and T_2 symbolize the top locations above the two types of Li atoms, T_3 symbolizes the top location above the Al atom; B_1 , B_2 and B_3 symbolize the bridge locations above the Al-Li bonds, B_4 and B_5 symbolize the bridge locations above the Li-Li bond and Al-Al bond; C_1 and C_2 symbolize the top locations above the center of triangles composed of Al-Li-Li, C_3 symbolizes the top locations above the center of triangles composed of Al-Li-Li, C_3 symbolizes the top locations above the center of triangles composed of Al-Li-Li, C_3 symbolizes the top locations above the center of triangle composed of Li-Al-Al.

Fig. S7. The configuration of core-shell volleyball-like $B_{12}@Li_{20}Al_{12}$ with 12 H₂ absorbed on the 12 Li^{II} atoms $(B_{12}@Li_{20}Al_{12}-12H_2)$ for part (*a*) and corresponding deformation electron density with different isovalues for part (b) and part (c). To be specific, the isovalue is 0.2 $e/Å^3$ for part (*b*) and 0.1 $e/Å^3$ for part (*c*).

Fig. S8. Partial density of states (PDOS) of H atoms both in 12 isolated H₂ molecules (*a*) and in B₁₂@Li₂₀Al₁₂-12H₂ (*b*), Al atoms both in B₁₂@Li₂₀Al₁₂ (*c*) and in B₁₂@Li₂₀Al₁₂-12H₂ (*d*) and Li atoms both in B₁₂@Li₂₀Al₁₂ (*e*) and in B₁₂@Li₂₀Al₁₂-12H₂ (*f*). The black dotted line is the Fermi level.

Fig. S9. The statistical results of distances of H_2 molecules to the cluster of the $B_{12}@Li_{20}Al_{12}$ with 58 H_2 (two layers of absorbed H_2 molecules) absorbed for part (*a*) and 12 H_2 (the first layer of absorbed H_2 molecules) absorbed for part (*b*). We take the distance of 7.14 Å as the farthest distance of the absorbed H_2 molecules to the cluster center. We also listed the numbers of absorbed H_2 molecules at different temperatures during molecular dynamics simulations.

Table S1. The average distance of all types of connections between different atoms for the B12@Li20Al12.

Average distance (Å)								
$d_{\rm B-B}$	$d_{ m B-Al}$	$d_{\mathrm{B-Li}^{I}}$	$d_{\mathrm{B-Li}^{II}}$	$d_{ m Al-Al}$	$d_{\rm Li-Li}$	$d_{\mathrm{Al-Li}^{I}}$	$d^1_{\mathrm{Al-Li}^{II}}$	$d^2_{\mathrm{Al-Li}^{II}}$
1.88	2.46	2.45	2.47	2.63	2.60	2.58	2.60	2.58

Table S2. The charge partitioning of the core-shell B₁₂@Li₂₀Al₁₂ by Hirshfeld analysis.

Charge partitioning (e)						
В	Al	Li ′	Li″			
-0.08	-0.06	0.01	0.14			

Table S3. The average adsorption energy (E_b) of per metal atom for the B₁₂@Li₂₀Al₁₂ and B₈₀M₁₂ (M= Li, Na, Mg, K, Ca and Sc).

Molecule	B12@Li20Al12	$B_{80}Li_{12} \\$	$B_{80}Na_{12} \\$	$B_{80}Mg_{12}$	$B_{80}K_{12}$	$B_{80}Ca_{12}$	$B_{80}Sc_{12} \\$
$E_{\rm b}~({\rm eV})$	2.78	2.77	1.77	1.33	1.70	2.31	4.06

Table S4. The distance of H₂ to the nearest metal atoms (d_{H-M}), adsorption energies (E_{ad}) and the desorption temperature (T_d) of H₂ molecule on the eleven specific adsorption locations. The specific meanings for the symbols of eleven specific adsorption locations have already been explained in Fig. S6.

Adsorption locations	T_1	T ₂	T3	B_1	B ₂	B ₃	B 4	B 5	C_1	C2	C3
$d_{H-M}(\mathrm{\AA})$	1.95	3.04	3.71	-	-	-	-	-	-	-	-
$E_{ad} (eV)$	-0.32	-0.11	-0.12	-0.13	-0.13	-0.14	-0.13	-0.14	-0.14	-0.16	-0.16
$T_d(\mathbf{K})$	408	140	153	166	166	179	166	179	179	204	204

Atom	Coordinates (Å)						
Atom	Х	Y	Ζ				
В	-0.155	-0.226	1.771				
В	-1.657	-0.192	0.657				
В	1.189	0.855	1.033				
В	0.462	1.633	-0.577				
В	-1.189	-0.856	-1.034				
В	0.154	0.226	-1.772				
В	-0.463	-1.634	0.576				
В	-0.603	1.399	0.946				
В	0.603	-1.399	-0.947				
В	1.657	0.191	-0.659				
В	-1.292	0.994	-0.751				
В	1.292	-0.995	0.750				
Li	-0.365	-1.718	-3.169				
Li	0.361	1.718	3.174				
Li	-1.208	3.408	-0.322				
Li	-3.503	-0.044	-0.955				
Li	1.926	1.733	-2.543				
Li	3.505	0.038	0.958				
Li	1.213	-3.416	0.326				
Li	-1.938	-1.737	2.550				
Li	2.817	2.081	2.419				
Li	-0.309	-0.560	4.211				
Li	0.314	0.569	-4.210				
Li	3.037	-2.351	1.843				
Li	-1.488	3.287	2.266				
Li	1.487	-3.291	-2.263				
Li	3.939	0.393	-1.582				
Li	-3.035	2.364	-1.840				
Li	-2.821	-2.092	-2.420				
Li	1.152	3.887	-1.326				
Li	-1.150	-3.890	1.322				
Li	-3.941	-0.391	1.589				
Al	2.030	-0.818	-2.879				
Al	-2.033	0.816	2.879				
Al	0.865	3.302	1.205				
Al	0.547	-2.443	2.615				
Al	-0.864	-3.304	-1.202				
Al	-1.986	0.280	-3.016				
Al	-0.548	2.445	-2.617				
Al	1.982	-0.277	3.020				
Al	-2.834	-2.253	0.187				

Table S5. The specific coordinates of every atom for the $B_{12}@Li_{20}Al_{12}.$

Al	2.833	2.254	-0.186
Al	-3.025	1.880	0.691
Al	3.024	-1.881	-0.690