Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Constructing donor-acceptor molecules as blue emitters with nonsymmetrical connection for

organic emitting diodes

Jayaraman Jayabharathi*, Jagathratchagan Anudeebhana, Venugopal Thanikachalam, Sekar Sivaraj, Annadurai Prabhakaran

Department of Chemistry, Materials science lab, Annamalai University, Annamalainagar 608 002, Tamilnadu, India

Address for correspondence

*Dr. J. Jayabharathi

Professor of Chemistry Department of Chemistry Materials science lab Annamalai University Annamalai nagar 608 002 Tamilnadu, India. E-mail: jtchalam2005@yahoo.co.in

Contents

SI–I: Scheme S1 SI–II: Charge-Transfer intexes SI– III: Figures

SI-IV: Tables

SI-I: Scheme S1. Synthetic route of *p*-PPI, *p*-CNPPI, *m*-PPI and *m*-CNPPI.

- (i) phenanthrenequinone, naphthalene-1-amine, ammonium acetate, glacial acetic acid;
- (ii) 10% Pd/C, 80% hydrazine hydrate, ethanol, reflux;

(iii) phenanthrenequinone, 1-naphthaldehyde, ammonium acetate, glacial acetic acid.

I.1. 1-(naphthalen-1-yl)-2-(4-nitrophenyl)-1*H*-phenanthro [9,10-d]imidazole (*p*-NPPI)

A mixture of phenanthrene-9,10-dione (2.08 g, 10 mmol), 4-nitrobenzaldehyde (1.51 g, 10 mmol), 1-naphthylamine (4.65 g, 50 mmol) with ammonium acetate (3.08 g, 40 mmol) in acetic acid (25 ml) was refluxed at 120° C for 12 h under nitrogen atmosphere and poured into methanol. The separated yellowish green crude was purified by column with hexane: ethyl acetate as the eluent (Figure S1). ¹H NMR (400 MHz, CDCl₃): 7.3 (d, 4H), 7.7- 7.74 (m, 5H), 7.82 - 7.88 (m, 4H), 8.12 (d, 2H), 8.25 (d, 2H), 8.93 (d, 2H). ¹³C- NMR (CDCl₃, 100 MHz,): 121.6, 122.4, 124.1,

126.3, 126.6, 127.2, 127.6, 127.8, 128.3, 128.4, 130.7, 131.5, 132.2, 134.6, 136.8, 148.4, 149.4. MS: m/z. 465.22 [M⁺]; Calcd. 465.15.

I.2. 4-(1-(naphthalen-1-yl)-1*H*-phenanthro[9,10-d]imidazol-2-yl)benzenamine (*p*-APPI)

A mixture of 1-(naphthalen-1-yl)-2-(4-nitrophenyl)-1H-phenanthro[9,10-d]imidazole (NPPI) (4.15 g,10 mmol) and 10 % Pd/C (250 mg) in 25 ml ethanol was refluxed under stirring and 80 % hydrazine hydrate (15 ml) was added slowly for 30 min and the stirring was continued for 12 h, the reaction mixture was neutralized with aqueous HCl. The white product was recrystallized from ethanol: water mixture(Figure S2). Yield: 65%. 1H NMR (400 MHz, CDCl₃) 4.0 (d, 2H), 6.52 (d, 2H), 7.23 (d, 2H), 7.3 (t, 4H), 7.7 (d, 2H), 7.82-7.88 (m, 4H), 8.12 (d, 2H), 8.93 (d, 2H). ¹³C NMR (CDCl₃, 100 MHz,): 116.8, 120.7, 122.4, 124.1, 126.3, 126.6, 127.2, 127.6, 127.8, 128.3, 130.7, 131.5, 132.2, 134.6, 148.4, 149.4. MS: m/z. 435.22 [M⁺]; Calcd. 435.17.

I.3. 2-(naphthalen-1-yl)-1-(4-(1-(naphthalen-1-yl)-1*H*-phenanthro[9,10-d]imidazol-2-yl) phenyl)-1-*H*-phenanthro[9,10-d]imidazole (*p*-PPI)

A mixture of phenanthrenequinone (0.416 g, 2 mmol), 1-naphthaldehyde (0.698 g, 2 mmol), (4-(1-(naphthalen-1-yl)-1*H*-phenanthro[9,10-d]imidazol-2-yl)benzenamine (APPI) (1.16 g, 3 mmol), ammonium acetate (1.54 g, 20 mmol) and glacial acetic acid (25 ml) was refluxed at 120° C for 12 h under nitrogen atmosphere [25] and poured into methanol. The separated white solid was subjected to water washings and purified by column using CH_2Cl_2 as the eluent(Figure S3). Yield: 52%.¹H NMR (400 MHz, CDCl₃, ppm): 7.3 (d, 3H), 7.32-7.38 (m, 6H), 7.5-7.54 (m, 3H), 7.63-7.70 (m, 6H), 7.82 (m, 4H), 7.88 (m, 4H), 8.12 (d, 4H), 8.93 (d, 4H). ¹³C NMR (CDCl₃, 100 MHz): (122.4, 122.9, 124.1, 124.7, 126.3, 126.6, 126.8, 127.6, 127.8, 128.3, 128.4, 130.2, 130.7, 131.5, 132.2, 132.7, 134.2, 134.6, 136.0, 137.4, 149.4. MALDI-TOF MS: m/z. 761.50 [M]⁺ (calcd: 762.28). Anal.calcd (%) for C₅₆H₃₄N₄: C, 88.16; H, 4.49; N, 7.34. Found: C, 88.14; H, 4.80; N, 7.35.

I.4. 4-(2-(4-nitrophenyl)-1*H*-phenanthro[9,10-d]imidazol-1-yl)naphthalene-1-carbonitrile (*p*-CNNPPI)

The *p*-CNNPPI was synthesized using 4-aminonaphthalene-1-carbonitrile and the methodology is similar to that of *p*-NPPI(Figure S4). ¹H NMR (400 MHz, CDCl₃) 7.4 (d, 1H), 7.5 - 7.6 (m, 2H), 7.74 - 7.88 (m, 8H), 8.12 - 8.25 (m, 5H), 8.93 (d, 2H). ¹³C NMR (CDCl₃, 100 MHz): 109.5, 115.8, 116.8, 121.6, 121.7, 122.4, 123.8, 126.5, 126.6, 127.5, 127.6, 128.3, 128.4, 128.5, 131.5, 132.7, 133.4, 136.0, 136.8, 148.4, 149.4. MS: m/z. 490.19 [M⁺]; Calcd. 490.14.

I.5. 4-(2-(4-aminophenyl)-1*H*-phenanthro[9,10-d]imidazol-1-yl)naphthalene-1-carbonitrile (*p*-CNAPPI)

Compound *p*-CNAPPI was synthesized using *p*-CNNPPI and the methodology is similar to that of *p*-APPI(Figure S5). ¹H NMR (400 MHz, CDCl₃) 4.0 (d, 2H), 6.52 (d, 2H), 7.23 (t, 2H), 7.4 (d, 1H), 7.5-7.6 (m, 2H), 7.8 -7.88 (m, 6H), 8.12 -8.2 (m, 3H), 8.93 (d, 2H). ¹³C NMR (CDCl₃, 100 MHz): 109.5, 115.8, 116.8, 120.7, 121.7, 122.4, 123.8, 126.5, 126.6, 127.5, 127.6, 128.3, 128.5, 131.5, 132.7, 133.4, 136.0, 148.4, 149.4. MS: m/z. 460.28 [M⁺]; Calcd. 460.17.

I.5. 4-(2-(4-(2-(naphthalen-1-yl)-1*H*-phenanthro[9,10-d]imidazol-1-yl)phenyl)-1*H*-phenanthro[9,10-d]imidazol-1-yl)naphthalene -1-carbonitrile (*p*-CNPPI)

The *p*-CNPPI was synthesized using *p*-CNAPPI and the methodology is similar to that of *p*-PPI(Figure S6). Yield: 70%, ¹H NMR (400 MHz, CDCl₃, ppm): (7.3 (d, 2H), 7.32 -7.54 (m, 8H), 7.6 - 7.67 (m, 4H), 7.8 -7.82 (m, 7H), 7.88 (m, 4H), 8.12 (m, 4H), 8.93 (d, 2H). ¹³C NMR (CDCl₃, 100 MHz): 109.5, 115.8, 121.7, 122.4, 122.9, 123.8, 124.7, 126.3, 126.5, 126.6, 127.5, 127.6, 128.3, 128.4, 128.5, 130.2, 131.5, 132.7, 133.4, 134.2, 136.0, 137.4, 149.4. MALDI-TOF MS: m/z. 787.38 [M]⁺ (calcd: 787.27). Anal. calcd (%) for $C_{57}H_{33}N_5$: C, 86.89; H, 4.22; N, 8.89. Found: C, 86.66; H, 4.32; N, 8.71.

I.6. 4-(2-(3-nitrophenyl)-1*H*-phenanthro[9,10-d]imidazol-1-yl)naphthalene-1-carbonitrile (*m*-NPPI)

The synthetic methodology is similar to that of *p*-NPPI by using *m*-nitrobenzaldehyde instead of *p*- nitrobenzaldehyde. Yield 68% (Figure S7). ¹H NMR (400 MHz, CDCl₃, ppm): 7.3 (d, 4H), 7.58-7.7 (m, 4H), 7.82 -7.88 (m, 10 H), 8.12 -8.15 (t, 3H), 8.41 (s, 1H), 8.93 (d, 2H).¹³C NMR

(CDCl₃, 100 MHz): 121.1, 122.1, 122.4, 124.1, 126.3, 126.6, 127.6, 127.8, 128.3, 130.2, 130.7, 131.5, 131.6, 132.2, 133.6, 134.6, 148.0, 149.4. MALDI-TOF MS: m/z. 465.22 [M]⁺ (calcd: 465.15). Anal. calcd (%) for C₃₁H₁₉N₃O₂: C, 79.99; H, 4.11; N, 9.03. Found: C, 80.11; H, 4.32; N, 9.25.

I.7. 3-(1-(naphthalen-1-yl)-1H-phenanthro[9,10-d]imidazol-2-yl)benzenamine (m-APPI)

Yield 70% (Figure S8). ¹H NMR (400 MHz, CDCl₃, ppm): 4.0 (d, 2H), 6.42 (d, 1H), 6.68 (d, 1H), 6.84 - 7.3 (m, 6H), 7.7 (d, 3H), 7.82 -7.88 (m, 4H), 8.12 (d, 2H), 8.93 (d, 2H). ¹³C NMR (CDCl₃, 100 MHz): 114.2, 116.3, 117.5, 122.4, 124.1, 126.3, 126.6, 127.2, 127.6, 127.8, 128.3, 130.1, 130.7, 131.5, 132.2, 134.6, 148.9, 149.4. MALDI-TOF MS: m/z. 435.12 [M]⁺ (calcd: 435.17).

I.8. 2-(naphthalen-1-yl)-1-(3-(1-(naphthalen-1-yl)-1*H*-phenanthro[9,10-d]imidazol-2yl)phenyl)-1*H*-phenanthro[9,10-d]imidazole (*m*-PPI)

Yield 70% (Figure S9). ¹H NMR (400 MHz, CDCl₃, ppm): 7.2 (d, 1H), 7.3-7.32 (m, 6H), 7.38 -7.54 (m, 4H), 7.67-7.7 (m, 5H), 7.82-7.88 (m, 8H), 8.12 (d, 4H), 8.93 (d, 4H). ¹³C NMR (CDCl₃, 100 MHz): 22.6, 119.5, 122.4, 124.1, 124.7, 126.3, 126.6, 126.8, 127.6, 127.8, 128.3, 130.2, 130.7, 131.5, 131.6, 132.2, 132.7, 134.2, 134.6, 136.0, 137.9, 149.4. MALDI-TOF MS: m/z. 762.32 [M]⁺ (calcd: 762.28). Anal. calcd (%) for C₅₆H₃₄N₄: C, 88.16; H, 4.49; N, 7.34. Found: C, 88.11; H, 4.56; N, 7.22.

I.9. 4-(2-(3-nitrophenyl)-1*H*-phenanthro[9,10-d]imidazol-1-yl)naphthalene-1-carbonitrile(*m*-CNNPPI)

Yield 70% (Figure S10). ¹H NMR (400 MHz, CDCl₃, ppm): 7.4 (d, 1H), 7.5 -7.6 (m, 3H), 7.8 -7.87 (m, 7H), 8.15-8.2 (m, 4H), 8.41 (s, 1H), 8.93 (d, 2H). ¹³C NMR (CDCl3, 100 MHz): 109.5, 115.8, 121.1, 121.7, 122.1, 122.4, 123.8, 126.5, 126.6, 127.5, 127.6, 128.3, 128.5, 130.2, 131.5, 131.6, 132.7, 133.4, 133.6, 136.0, 148.0, 149.4. MALDI-TOF MS: m/z. 490.21 [M]⁺ (calcd: 490.14).

I.10. 4-(2-(3-aminophenyl)-1*H*-phenanthro[9,10-d]imidazol-1-yl)naphthalene-1-carbonitrile (*m*-CNAPPI)

Yield 70%(Figure S11). ¹H NMR (400 MHz, CDCl₃, ppm): 4.0 (d, 2H), 6.42 (d, 1H), 6.68

(d, 1H), 6.84 (t, 1H), 7.07 (m, 1H), 7.4 (d, 1H), 7.5 -8.12 (m, 8H), 8.12 -8.2 (m, 3H), 8.93 (d, 2H). ¹³C NMR (CDCl₃, 100 MHz): 109.5, 114.2, 115.8, 116.3, 117.5, 121.7, 122.4, 123.8, 126.5, 126.6, 127.5, 127.6, 128.3, 128.5, 130.1, 131.5, 132.7, 133.4, 136.0, 148.9, 149.4. MALDI-TOF MS: m/z. 460.28 [M]⁺ (calcd: 460.17).

I.11. 4-(2-(3-(2-(naphthalen-1-yl)-1*H*-phenanthro[9,10-d]imidazol-1-yl)phenyl)-1*H*-phenanthro[9,10-d]imidazol-1-yl)naphthalene-1-carbonitrile(*m*-CNPPI)

Yield 70%(Figure S12). ¹H NMR (400 MHz, CDCl₃, ppm): 7.2 (d, 1H), 7.3-7.32 (m, 3H), 7.38-7.5 (m, 6H), 7.54-7.67 (m, 5H), 7.80-7.88 (m, 10H), 8.12-8.2 (m, 5H), 8.93 (d, 4H). ¹³C NMR (100 MHz, CDCl₃): (109.5, 115.8, 119.5, 121.7, 122.4, 123.8, 124.7, 126.3, 126.5, 126.6, 126.8, 127.6, 128.3, 128.5, 130.2, 131.5, 131.6, 132.7, 133.4, 134.2, 136.0, 137.9, 149.4. MALDI-TOF MS: m/z. 787.10 [M]⁺ (calcd: 787.27). Anal. calcd (%) for C₅₇H₃₃N₅: C, 86.89; H, 4.22; N, 8.89. Found: C, 86.72; H, 4.41; N, 8.94.

Figure S1. H¹ and C¹³ NMR spectra of *p*-NPPI

Figure S3. H¹ and C¹³ NMR spectra of *p*-PPI

Figure S4. H¹ and C¹³ NMR spectra of *p*-CNNPPI

Figure S6. H¹ and C¹³ NMR spectra of *p*-CNPPI

Figure S7. H¹ and C¹³ NMR spectra of *m*-NPPI

Figure S9. 2 H¹ and C¹³ NMR spectra of *m*-PPI

Figure S10 H¹ and C¹³ NMR spectra of *m*-CNNPPI

Figure S11. H¹ and C¹³ NMR spectra of *m*-CNAPPI

Figure S12. H¹ and C¹³ NMR spectra of *m*-CNPPI

SI-II: Charge-Transfer intexes

The hole-particle pair interactions have been related to the distance covered during the excitations one possible descriptor Δr intex could be used to calculate the average distance which is weighted in function of the excitation coefficients.

where $|\langle \varphi_i | r | \varphi_i \rangle|$ is the norm of the orbital centroid [1–4]. Δr -index will be expressed in Å. The density variation associated to the electronic transition is given by

 $\Delta \rho(r) = \rho_{EX}(r) - \rho_{GS}(r) \tag{S2}$

where $\rho_{GS}(r)$ and $\rho_{EX}(r)$ are the electronic densities of to the ground and excited states, respectively. Two functions, $\rho_+(r)$ and $\rho_-(r)$, corresponds to the points in space where an increment or a depletion of the density upon absorption is produced and they can be defined as follows:

$$\rho_{+}(r) = \begin{cases} \Delta \rho(r) & if \ \Delta \rho(r) > 0 \\ 0 & if \ \Delta \rho(r) < 0 \end{cases}$$

$$\rho_{-}(r) = \begin{cases} \Delta \rho(r) & if \ \Delta \rho(r) < 0 \\ 0 & if \ \Delta \rho(r) > 0 \end{cases}$$
(S3)

The barycenters of the spatial regions R₊ and R₋ are related with $\rho_+(r)$ and $\rho_-(r)$ and are shown as

$$R_{+} = \frac{\int r\rho_{+}(r)dr}{\int \rho_{+}(r)dr} = (x_{+,y_{+,z_{+}}})$$
.....(S5)
$$R_{-} = \frac{\int r\rho_{-}(r)dr}{\int \rho_{-}(r)dr} = (x_{-,y_{-,z_{-}}})$$
.....(S6)

The spatial distance (D_{CT}) between the two barycenters R_+ and R_- of density distributions can thus be used to measure the CT excitation length

The transferred charge (q_{CT}) can be obtained by integrating over all space $\rho_+(\rho_-)$, Variation in dipole moment between the ground and the excited states (μ_{CT}) can be computed by the following relation:

$$\|\mu_{CT}\| = D_{CT} \int \rho_{+}(r) dr = D_{CT} \int \rho_{-}(r) dr_{......}$$
(S8)
= $D_{CT} q_{CT}_{......}$ (S9)

The difference between the dipole moments $\|\mu_{CT}\|$ have been computed for the ground and the excited states $\Delta\mu_{ES-GS}$. The two centroids of charges (C⁺/C⁻) associated to the positive and negative

density regions are calculated as follows. First the root-mean-square deviations along the three axis $(\sigma_{aj}, j = x, y, z; a = + or -)$ are computed as

The two centroids $(C_+ \text{ and } C_-)$ are defined as

$$C_{+}(r) = A_{+}e\left(\frac{(x-x_{+})^{2}}{2\sigma_{+x}^{2}} - \frac{(y-y_{+})^{2}}{2\sigma_{+y}^{2}} - \frac{(z-z_{+})^{2}}{2\sigma_{+z}^{2}}\right)$$
(S11)
$$C_{-+}(r) = A_{-}e\left(\frac{(x-x_{-})^{2}}{2\sigma_{-x}^{2}} - \frac{(y-y_{-})^{2}}{2\sigma_{-y}^{2}} - \frac{(z-z_{-})^{2}}{2\sigma_{-z}^{2}}\right)$$
(S12)

The normalization factors (A+ and A_) are used to impose the integrated charge on the centroid to be equal to the corresponding density change integrated in the whole space:

$$A_{+} = \frac{\int \rho_{+}(r)dr}{\int e(-\frac{(x-x_{\perp})^{2}}{2\sigma_{+x}^{2}} - \frac{(y-y_{\perp})^{2}}{2\sigma_{+y}^{2}} - \frac{(z-z_{\perp})^{2}}{2\sigma_{+z}^{2}})dr} \dots (S13)$$

$$A_{-} = \frac{\int \rho_{-}(r)dr}{\int e(-\frac{(x-x_{\perp})^{2}}{2\sigma_{-x}^{2}} - \frac{(y-y_{\perp})^{2}}{2\sigma_{-y}^{2}} - \frac{(z-z_{\perp})^{2}}{2\sigma_{-z}^{2}})dr} \dots (S14)$$

H index is defined as half of the sum of the centroids axis along the D-A direction, if the D-A direction is along the X axis, H is defined by the relation:

The centroid along X axis is expected. The t intex represents the difference between D_{CT} and H:

~

$$t = D_{CT} - H_{.....}$$
 (S16)

The integral of hole (h⁺) and electron (e⁻) of *p*-PPI, *p*-CNPPI, *m*-PPI and *m*-CNPPI with transition density is displayed in Tables S1-S4. The integral overlap of hole-electron (Figure S20p-PPI; Figure S21- p-CNPPI; Figure S22- m-PPI; Figure S23- m-CNPPI) distribution (S) is a measure of spatial separation of hole and electron. The integral overlap (S) of hole and electron and distance (D) between centroids of hole and electron confirmed the existence of LE and CT states. Compared to parent compounds, the cyano derivatives has high Dave and Save value, indicates charge transfer is higher in percentage. The variation of dipolemoment with respect to S₀ is outputted which is directly evaluated based on the position of centroid of hole and electron. The RMSD of hole or electron characterizes their distribution breadth: RMSD of both electron and hole in p-PPI, *m*-PPI and *m*-CNPPI (Tables S5, S7 & S8) is higher in X direction, indicates electron and hole distribution is much broader in X direction whereas RMSD of hole and electron in p-CNPPI (Table S6) is higher in y-direction. The H intex (half sum of the axis of anistropic density variation distribution) measures the spread of positive and negative regions related to CT. The CT intex, i.e., t index (D_{CT} - H intex) is another measure of separation of hole-electron (equations S15 and S16; Tables S5- S8). The t is negative in all directions which reveal that the overlap of hole and electron is very severe which supports the hybridization. This is further evidenced by Δr intex (equation S1: Tables S9-S12) which is average of hole -electron distance (d_{h-e}^+) upon excitation which shows the nature of excitation type, LE or CT: valence excitation (LE) is related to short distance ($< d_{h^+,e^-}$) while the larger distance (> $d_{h^+-e^-}$) is related to CT excitation. The triplet exciton is transformed to singlet exciton through RISC process with high energy excited state (hot CT channel) [1] which is beneficial for triplet exciton conversion in electroluminescence process without any delayed fluorescence. The CT excitons are formed with weak binding energy (E_b) on higher excited states, [2] as a result; the exciton utilization (η_s) can be harvested like phosphorescent materials. The enhanced LE component and hybridization between LE and CT components results high η_{PL} and

high η_s . The coexisting LE/CT composition harvested high η_{PL} and high η_s and enhanced OLEDs efficiencies.

Figure S13. Potential energy surface scan (PES) diagram.

Figure S14. Natural transition orbital pairs (HONTOs and LUNTOs) with transition character for singlet states of *p*-CNPPI [*f*-oscillator strength and % weights of hole-particle].

Figure S17. Natural transition orbital pairs (HONTOs & LUNTOs) with transition character for singlet states of *m*-CNPPI [*f*-oscillator strength and % weights of hole-particle].

Figure S18. Solvatochromic absorption of (a) *p*-PPI, (b) *p*-CNPPI, (c) *m*-PPI and (d) *m*-CNPPI.

Figure S19. Normalized solvatochromic emission spectra of (a) *p*-PPI, (b) *p*-CNPPI, (c) *m*-PPI and (d) *m*-CNPPI.

Figure S20. Hole and particle electron density distribution [green increasing and blue decreasing electron density and Transition density matrices (TDM) plot of *p*-PPI.

Figure S22. Hole and particle electron density distribution [green increasing and blue decreasing electron density and Transition density matrices (TDM) plot of *m*-PPI.

Figure S23. Hole and particle electron density distribution [green increasing and blue decreasing electron density and Transition density matrices (TDM) plot of *m*-CNPPI.

	Hole	Electron	Integral of	Integral	Centr	oid of ho	e (Å)	Centre	oid of elec	tron (Å)		
State	integral	integral	transition density	overlap of h ⁺ - e ⁻ (S)	X	У	Z	X	У	Z	D (A)	μ (a.u)
S 1	0.8448	0.6681	-0.0138	0.3846	-4.03	0.94	-0.35	-3.37	1.96	-1.10	1.42	2.04
S2	0.8033	0.6193	-0.0104	0.3021	4.32	0.46	1.09	2.35	0.07	0.68	2.05	2.76
S3	0.8418	0.6426	-0.0126	0.5366	3.31	-1.79	-1.89	3.07	-2.19	-2.15	0.54	0.75
S4	0.8316	0.5998	0.0019	0.4718	4.33	-0.01	0.38	4.94	-0.20	0.15	0.67	0.91
S5	0.7754	0.5503	0.0034	0.3893	2.59	-1.15	-1.45	2.94	-1.30	-1.64	0.42	0.53
S6	0.6535	0.4962	-0.0069	0.3060	-3.51	1.41	-0.40	-3.53	2.27	-1.09	1.10	1.19
S7	0.8017	0.5768	0.0007	0.4640	-4.78	-1.26	0.78	-4.86	-1.71	0.98	0.49	0.64
S 8	0.7583	0.5411	-0.0049	0.3914	-3.33	2.45	-1.01	-3.34	2.05	-0.93	0.40	0.49
S9	0.5785	0.4430	-0.0002	0.2819	0.29	0.13	0.13	0.15	0.76	0.08	0.64	0.62
S10	0.5717	0.4406	0.0092	0.2319	-0.33	-0.11	-0.55	-0.74	0.73	-0.19	1.01	0.96

Table S1. Hole and electron overlap (S), distance between centroids of hole and electron (D, Å) and dipole moment (μ) of *p*-PPI.

	Hole	Electron	Integral of	Integral	Centr	oid of hol	e (Å)	Centr	oid of elect	tron (Å)	- (%)	
State	integral	integral	transition density	overlap of h ⁺ - e ⁻ (S)	X	У	Z	X	У	Z	D (A)	μ (a.u)
S 1	0.8261	0.7236	-0.0074	0.2031	3.32	-0.12	-1.90	0.84	1.01	-0.60	3.02	4.43
S2	0.8529	0.7231	0.0234	0.1848	3.32	-0.12	-1.90	0.70	-0.04	-0.84	2.83	4.21
S3	0.8260	0.6977	-0.0086	0.0967	4.55	0.32	-0.50	0.75	0.98	-0.60	3.86	5.56
S4	0.8027	0.6706	0.0129	0.2572	3.32	-0.12	-1.90	1.07	-0.14	-1.40	2.30	3.20
S5	0.8750	0.7721	-0.0082	0.0860	3.27	-0.12	-1.93	-2.53	2.77	-0.14	6.73	10.47
S6	0.8475	0.6972	0.0118	0.1176	4.59	0.32	-0.49	0.63	0.01	-0.25	3.98	5.81
S7	0.7715	0.6146	-0.0098	0.2776	4.32	0.19	-0.85	4.25	-0.05	0.73	1.60	2.10
S8	0.6699	0.5298	0.0020	0.2218	3.41	-0.08	-1.50	4.16	0.16	0.54	2.19	2.48
S9	0.7631	0.5848	-0.0082	0.1586	3.21	-0.31	-1.88	-0.66	0.53	-0.13	4.34	5.52
S10	0.7903	0.6017	-0.0006	0.2226	2.8	-0.44	-1.96	0.88	0.84	-0.29	2.85	3.75

Table S2. Hole and electron overlap (S), distance between centroids of hole and electron (D, Å) and dipole moment (μ) of *p*-CNPPI.

	Hole	Electron	Integral of	Integral	Centr	oid of hol	e (Å)	Centr	oid of elec	tron (Å)		
State	integral	integral	transition density	overlap of h ⁺ - e ⁻ (S)	X	У	Z	X	У	Z	D (A)	μ (a.u)
S 1	0.7145	0.7318	-0.0015	0.1636	-1.87	-3.16	-0.66	-0.38	-1.50	0.66	2.60	3.54
S2	0.7061	0.6828	-0.0009	0.2428	-1.87	-3.16	-0.66	-1.60	-3.97	-1.27	1.05	1.37
S3	0.6702	0.5943	-0.0909	0.1508	-1.87	-3.16	-0.66	-3.37	-1.24	-0.49	2.44	2.91
S4	0.6603	0.6071	0.0261	0.3431	-0.28	-1.44	0.71	0.13	-1.28	0.86	0.47	0.56
S5	0.6725	0.6138	-0.0100	0.1090	-1.87	-3.16	-0.66	1.15	-1.35	0.74	3.79	4.61
S6	0.6516	0.6223	-0.0150	0.1068	-1.87	-3.16	-0.66	2.31	-1.99	0.46	4.48	5.39
S7	0.6658	0.5075	0.0390	0.1979	-1.26	-3.01	-0.37	-0.74	-0.99	0.53	2.27	2.52
S8	0.7924	0.6529	-0.0082	0.2940	1.97	-2.51	1.13	1.18	-1.64	0.88	1.20	1.64
S9	0.6298	0.5822	0.0047	0.0856	-1.74	-3.02	-0.55	0.72	-0.97	0.60	3.40	3.90
S10	0.5923	0.4618	-0.0128	0.1547	-1.87	-3.16	-0.66	-0.89	-1.57	-0.21	1.92	1.91

Table S3. Hole and electron overlap (S), distance between centroids of hole and electron (D, Å) and dipole moment (μ) of *m*-PPI.

	Hole	Electron	Integral of	Integral	Centr	oid of hol	e (Å)	Centr	oid of elect	tron (Å)	- (%)	
State	integral	integral	transition density	overlap of h ⁺ - e ⁻ (S)	X	У	Z	X	У	Z	D (A)	μ (a.u)
S 1	0.7145	0.7318	-0.0015	0.1636	-1.87	-3.16	-0.66	-0.38	-1.50	0.66	2.60	3.55
S2	0.7061	0.6828	-0.0009	0.2428	-1.87	-3.16	-0.66	-1.60	-3.97	-1.27	1.05	1.37
S3	0.6701	0.5943	-0.0909	0.1508	-1.87	-3.16	-0.66	-3.37	-1.24	-0.49	2.44	2.91
S4	0.6929	0.6839	-0.0548	0.1315	-1.94	-3.69	-0.30	-3.90	-1.48	-0.78	3.00	3.90
S5	0.5851	0.5941	0.0534	0.1407	-0.80	-0.26	0.29	0.40	-0.50	0.74	1.31	1.46
S6	0.5851	0.5941	0.0534	0.1407	-0.80	-0.26	0.29	0.40	-0.50	0.74	1.31	1.46
S7	0.6456	0.5890	-0.0065	0.1906	-0.02	-1.22	0.45	0.37	-1.38	0.83	0.57	0.66
S8	0.5364	0.4103	0.0765	0.1654	-1.59	-3.04	-0.13	-1.78	-1.97	-0.18	1.08	0.97
S9	0.6138	0.5252	-0.0002	0.1692	0.56	-2.08	0.44	-0.30	-0.71	0.51	1.62	1.74
S10	0.5402	0.5427	0.0350	0.1341	-1.16	-1.15	0.23	-2.22	1.35	-0.15	2.74	2.80

Table S4. Hole and electron overlap (S), distance between centroids of hole and electron (D, Å) and dipole moment (μ) of *m*-CNPPI.

State	ŀ	RMSD (1	Electron	ı)		RMSD	(Hole)			H iı	ndex			t in	ıdex	
State	X	У	Z	total	X	У	Z	total	X	У	Z	Total	X	У	Z	Total
S 1	1.609	2.302	1.194	3.052	2.199	3.060	1.586	4.089	1.904	2.681	1.390	3.570	-1.249	-1.662	-0.638	2.175
S2	3.029	1.133	1.270	3.475	3.073	1.438	1.645	3.771	3.051	1.285	1.458	3.618	-1.080	-0.900	-1.044	1.751
S3	1.321	1.746	1.530	2.671	1.383	1.777	1.737	2.844	1.352	1.761	1.634	2.757	-1.113	-1.360	-1.371	2.229
S4	2.353	2.085	2.280	3.883	3.045	1.892	2.146	4.178	2.699	1.988	2.213	4.017	-2.096	-1.799	-1.981	3.399
S5	2.702	2.483	1.830	4.101	3.033	2.383	1.936	4.315	2.867	2.433	1.883	4.206	-2.517	-2.285	-1.699	3.800
S6	1.779	2.515	1.314	3.349	2.645	2.978	1.531	4.267	2.212	2.747	1.423	3.803	-2.201	-1.891	-0.735	2.994
S7	2.376	2.118	1.228	3.411	2.704	2.130	1.335	3.692	2.540	2.124	1.282	3.550	-2.460	-1.678	-1.081	3.168
S 8	2.388	2.745	1.490	3.931	2.426	2.788	1.421	3.960	2.407	2.766	1.455	3.945	-2.393	-2.375	-1.373	3.640
S9	4.676	2.243	1.845	5.505	5.030	2.241	1.815	5.799	4.853	2.242	1.830	5.651	-4.716	-1.615	-1.778	5.292
S10	4.034	2.200	1.644	4.881	4.575	2.473	1.803	5.505	4.305	2.336	1.724	5.192	-3.889	-1.493	-1.358	4.381

Table S5. Computed RMSD of electron and hole, H index and t index of *p*-PPI.

State	ŀ	RMSD (1	Electron	ı)		RMSD	(Hole)			H iı	ndex			t in	ıdex	
State	X	У	Z	total	X	У	Z	total	X	У	Z	Total	X	У	Z	Total
S 1	1.742	1.236	1.095	2.400	1.687	1.334	1.501	2.623	1.714	1.285	1.298	2.505	0.770	-0.154	0.002	0.785
S2	2.240	1.561	1.431	3.083	1.687	1.334	1.501	2.623	1.964	1.448	1.466	2.846	0.656	-1.367	-0.404	1.569
S3	1.935	1.301	1.132	2.592	1.425	1.261	2.135	2.860	1.680	1.281	1.633	2.671	2.122	-0.624	-1.534	2.691
S4	3.149	1.926	1.750	4.085	1.687	1.334	1.501	2.623	2.418	1.630	1.625	3.339	-0.171	-1.612	-1.123	1.972
S5	2.231	2.038	1.724	3.480	1.704	1.345	1.454	2.613	1.968	1.692	1.589	3.043	3.835	1.206	0.204	4.025
S6	2.620	1.442	1.493	3.343	1.352	1.245	2.153	2.831	1.986	1.343	1.823	3.012	1.980	-1.037	-1.580	2.737
S 7	2.958	1.239	1.936	3.746	1.450	1.256	2.130	2.866	2.204	1.247	2.033	3.247	-2.137	-1.007	-0.448	2.405
S 8	2.960	1.354	1.879	3.758	2.017	1.358	1.807	3.030	2.488	1.356	1.843	3.380	-1.748	-1.113	0.205	2.083
S9	3.020	1.786	1.167	3.698	1.944	1.365	1.621	2.876	2.482	1.576	1.394	3.254	1.392	-0.728	0.363	1.612
S10	2.659	1.535	1.529	3.430	2.414	1.348	1.547	3.168	2.537	1.442	1.538	3.298	-0.622	-0.156	0.139	0.656

Table S6. Computed RMSD of electron and hole, H index and t index of *p*-CNPPI.

State	ŀ	RMSD (1	Electror	ı)		RMSD	(Hole)			H iı	ndex			t in	ıdex	
State	X	У	Z	total	X	У	Z	total	X	У	Z	Total	X	У	Z	Total
S 1	2.056	1.887	1.217	3.044	1.566	1.480	1.640	2.707	1.811	1.683	1.428	2.855	-0.317	-0.022	-0.103	0.334
S2	1.673	1.545	1.600	2.784	1.566	1.480	1.640	2.707	1.619	1.512	1.620	2.745	-1.354	-0.697	-1.019	1.833
S3	1.588	1.920	1.508	2.912	1.566	1.480	1.640	2.707	1.577	1.700	1.574	2.802	-0.080	0.217	-1.404	1.423
S4	2.168	1.861	1.110	3.065	2.167	1.859	1.257	3.120	2.168	1.860	1.184	3.092	-1.752	-1.698	-1.037	2.652
S5	2.736	2.133	1.428	3.752	1.566	1.480	1.640	2.707	2.151	1.806	1.534	3.200	0.867	0.004	-0.123	0.876
S6	2.482	2.004	1.549	3.546	1.566	1.480	1.640	2.707	2.024	1.742	1.595	3.110	2.156	-0.577	-0.470	2.280
S7	3.380	2.619	1.621	4.573	2.244	1.611	1.753	3.272	2.812	2.115	1.687	3.902	-2.294	-0.092	-0.789	2.427
S 8	2.444	1.923	1.357	3.393	2.211	1.621	1.517	3.134	2.328	1.772	1.437	3.259	-1.538	-0.904	-1.184	2.141
S9	3.809	2.604	1.743	4.933	1.666	1.586	1.650	2.831	2.738	2.095	1.697	3.842	-0.277	-0.044	-0.544	0.612
S10	3.202	2.584	1.981	4.566	1.566	1.480	1.640	2.707	2.384	2.032	1.810	3.618	-1.408	-0.443	-1.359	2.007

 Table S7. Computed RMSD of electron and hole, H index and t index of *m*-PPI.

State	ŀ	RMSD (1	Electron	ı)		RMSD	(Hole)			H iı	ndex			t in	ıdex	
State	X	У	Z	total	X	У	Z	total	X	У	Z	Total	X	У	Z	Total
S 1	2.056	1.887	1.217	3.044	1.566	1.480	1.640	2.707	1.811	1.683	1.428	2.855	-0.317	-0.022	-0.103	0.334
S2	1.673	1.545	1.600	2.784	1.566	1.480	1.640	2.707	1.619	1.512	1.620	2.745	-1.354	-0.697	-1.019	1.833
S3	1.588	1.920	1.508	2.912	1.566	1.480	1.640	2.707	1.577	1.700	1.574	2.802	-0.080	0.217	-1.404	1.423
S4	1.212	1.796	1.355	2.556	1.299	1.973	1.289	2.691	1.256	1.885	1.322	2.622	0.706	0.330	-0.836	1.143
S5	1.947	1.907	0.992	2.900	1.528	2.985	1.032	3.509	1.738	2.446	1.012	3.166	-0.533	-2.208	-0.561	2.340
S6	1.947	1.907	0.992	2.900	1.528	2.985	1.032	3.509	1.738	2.446	1.012	3.166	-0.533	-2.208	-0.561	2.340
S7	1.737	1.619	1.116	2.624	1.925	2.823	1.372	3.682	1.831	2.221	1.244	3.136	-1.441	-2.054	-0.866	2.655
S8	2.306	2.833	1.313	3.881	1.535	2.553	1.288	3.245	1.920	2.693	1.300	3.554	-1.738	-1.629	-1.249	2.689
S9	2.091	2.316	0.985	3.272	1.834	2.671	1.412	3.534	1.963	2.493	1.199	3.392	-1.105	-1.123	-1.127	1.937
S10	2.369	3.451	1.077	4.322	1.414	3.152	1.059	3.613	1.891	3.301	1.068	3.951	-0.839	-0.802	-0.685	1.347

Table S8. Computed RMSD of electron and hole, H index and t index of *m*-CNPPI.

•

		Singlet			Triplet	
State	Excitation energy	Excitation coefficient	∆r intex	Excitation energy	Excitation coefficient	Δr intex
1	3.2703	0.4088	2.8168	1.2421	0.7347	2.1928
2	3.3933	0.3913	2.2034	1.6382	0.6005	2.6795
3	3.5708	0.4028	1.5171	1.7574	0.7137	3.6964
4	3.6164	0.3903	2.9287	1.8267	0.4700	1.6542
5	3.6407	0.3612	2.1019	1.8621	0.6741	2.8306
6	3.6515	0.3033	1.6490	1.9642	0.7257	2.5651
7	3.7464	0.3769	3.2094	2.2518	0.6418	2.4273
8	3.7835	0.3469	2.3971	2.2738	0.6366	4.8961
9	3.9408	0.2839	2.4267	2.3567	0.4896	3.3768
10	3.9538	0.2803	2.3975	2.4910	0.4527	2.8496

		Singlet	
State	Excitation energy	Excitation coefficient	Δr intex
1	0.7975	0.4564	3.2343
2	1.1326	0.4712	4.7964
3	1.7248	0.4396	4.0902
4	2.2512	0.4435	3.7182
5	2.3754	0.4840	4.6199
6	2.4168	0.4506	5.4468
7	2.5755	0.4138	2.8682
8	2.7131	0.3586	2.6000
9	2.8425	0.4094	4.1256
10	2.9032	0.3935	3.4087

Table S10. Excitation energy (eV), excitation coefficient and Δr intex (Å) of *p*-CNPPI.

		Singlet	
State	Excitation energy	Excitation coefficient	Δr intex
1	0.5997	0.4666	3.0437
2	1.5712	0.4612	2.8729
3	1.7273	0.4377	2.3364
4	2.0665	0.3821	1.3925
5	2.0757	0.4393	3.0422
6	2.1701	0.4256	2.8190
7	2.5535	0.4200	2.7773
8	2.6330	0.4106	2.1899
9	2.8093	0.4075	3.4323
10	2.8155	0.3869	2.8880

Table S11. Excitation energy (eV), excitation coefficient and Δr intex (Å) of *m*-PPI.

		Singlet		Triplet			
State	Excitation energy	Excitation coefficient	∆r intex	Excitation energy	Excitation coefficient	Δr intex	
1	0.4743	0.4646	2.3554	1.2118	0.8521	0.7524	
2	0.5846	0.4470	3.1815	1.3637	0.8232	2.5474	
3	0.9489	0.4489	2.6858	1.4339	0.7384	2.5612	
4	1.2134	0.4443	2.2847	1.5224	0.7294	2.0407	
5	1.4712	0.4369	3.2150	1.6485	0.7938	2.1733	
6	1.5469	0.3997	1.8758	1.7580	0.70350	2.1163	
7	1.8385	0.4224	1.8674	1.8139	0.6601	2.0937	
8	1.9125	0.3442	2.4355	1.8240	0.6540	1.8880	
9	1.9501	0.3918	1.9242	1.8616	0.7903	2.5198	
10	2.0421	0.3690	2.7169	2.1267	0.6669	1.9693	

Table S12. Excitation energy (eV), excitation coefficient and Δr intex (Å) of *m*-CNPPI.

Energy	Es	Oscillator	μ	NTO Transitions
level		strength (<i>f</i>)		
1	0.8	0.07	2.11	85% $143 \rightarrow 144$
2	1.13	0.01	1.77	53%
3	1.72	0.05	1.18	$\begin{array}{c} 143 \\ 83\% \\ 142 \rightarrow 144 \end{array}$
4	2.25	0.08	0.65	$142 \xrightarrow{1} 144$ 30% $142 \xrightarrow{1} 154$
5	2.38	0.01	0.53	$143 \xrightarrow{1} 134$ 46% $142 \xrightarrow{1} 145$
6	2.42	0.09	0.49	143 145 $45%$
7	2.58	0.01	0.33	142
8	2.71	0.06	0.19	$142 \xrightarrow{\rightarrow} 150$
9	2.84	0.03	0.06	$143 \xrightarrow{\rightarrow} 150_{19\%}$
10	2.9	0.01	0.00	$143 \xrightarrow{\rightarrow} 147_{19\%}$
				$140 \rightarrow 144$

Table S13. Singlet (E_S) energies (eV), oscillator strength (*f*), dipole moment (μ , D) of *p*-CNPPI.

Energy level	Es	Oscillator strength (f)	μ	NTO Transitions	E _T	ΔE_{ST}	NTO Transitions
1	3.27	0.46	2.04	$138 \xrightarrow{59\%} 140$	1.24	2.26	57% 137 → 141
2	3.39	0.52	2.76	$139 \xrightarrow{57\%} 142$	1.64	2.52	$138 \xrightarrow{30\%} 141$
3	3.57	0.27	0.75	62% $137 \xrightarrow{62\%} 141$	1.76	2.67	$139 \xrightarrow{28\%}{142}$
4	3.62	0.01	0.91	$139 \xrightarrow{22\%} 144$	1.83	2.73	$134 \xrightarrow{18\%} 142$
5	3.64	0.05	0.53	$139 \xrightarrow{24\%}{144}$	1.86	2.75	$140 \xrightarrow{26\%} 147$
6	3.65	0.04	1.19	$136 \xrightarrow{42\%} 140$	1.96	2.81	$140 \xrightarrow{54\%} 150$
7	3.75	0.01	0.64	$138 \xrightarrow{29\%} 146$	2.25	3.00	$137 \xrightarrow{31\%}{153}$
8	3.78	0.05	0.49	$134 \xrightarrow{19\%} 143$	2.27	3.03	$137 \xrightarrow{32\%}{139}$
9	3.94	0.07	0.62	$134 \xrightarrow{21\%} 143$	2.36	3.15	$137 \xrightarrow{20\%}{152}$
10	3.95	0.04	0.96	$137 \xrightarrow{19\%} 142$	2.49	3.22	$136 \xrightarrow{20\%} 139$

Table S14. Computed singlet (E_S) and triplet (E_T) energies (eV), oscillator strength (*f*), dipole moment (μ , D) and singlet-triplet splitting (ΔE_{ST} , eV) of *p*-PPI.

Energy level	Es	Oscillator strength (<i>f</i>)	μ	NTO Transitions	E _T	ΔE_{ST}	NTO Transitions
1	0.47	0.01	1.5678	$52\% \\ 142 \rightarrow 144$	1.11	0.79	$\begin{array}{c} 92\%\\141 \rightarrow 143\end{array}$
2	0.58	0.01	1.4575	$143 \xrightarrow{51\%} 144$	1.36	0.97	$142 \xrightarrow{85\%} 143$
3	0.95	0.00	1.0932	$143 \xrightarrow{58\%} 145$	1.43	1.19	$142 \xrightarrow{43\%} 145$
4	1.21	0.03	0.8287	$142 \xrightarrow{44\%} 145$	1.52	1.36	$51\% \\ 141 \rightarrow 146$
5	1.47	0.03	0.5709	$143 \xrightarrow{60\%} 146$	1.65	1.56	$50\% \\ 142 \rightarrow 150$
6	1.55	0.04	0.4952	$\begin{array}{c} 42\%\\141 \xrightarrow{42\%} 144\end{array}$	1.76	1.65	$143 \xrightarrow{46\%} 150$
7	1.84	0.00	0.2036	$\begin{array}{c} 32\%\\141 144 \end{array}$	1.81	1.82	$\begin{array}{c} 29\%\\ 140 \rightarrow 143 \end{array}$
8	1.91	0.07	0.1296	$142 \xrightarrow{26\%} 151$	1.82	1.86	$\begin{array}{c} 24\% \\ 140 \rightarrow 145 \end{array}$
9	1.95	0.01	0.0920	$142 \xrightarrow{41\%} 151$	1.86	1.90	$\begin{array}{c} 43\%\\141 \rightarrow 144\end{array}$
10	2.04	0.05	0.0000	$142 \xrightarrow{35\%} 151$	2.13	2.08	$\begin{array}{c} 30\%\\ 142 \rightarrow 143 \end{array}$

Table S15. Computed singlet (E_S) and triplet (E_T) energies (eV), oscillator strength (*f*), dipole moment (μ , D) and singlet-triplet splitting (ΔE_{ST} , eV) of *m*-CNPPI.

Energy level	Es	Oscillator strength (<i>f</i>)	μ	NTO Transition
1	0.6	0.01	2.22	$\begin{array}{c} & 71\% \\ 139 \xrightarrow{} 140 \end{array}$
2	1.57	0.03	1.24	$\begin{array}{c} 25\%\\ 139 \rightarrow 149\end{array}$
3	1.73	0.10	1.09	48% $139 \rightarrow 142$
4	2.07	0.15	0.75	$\begin{array}{c} 66\% \\ 138 \rightarrow 140 \end{array}$
5	2.08	0.02	0.74	$\begin{array}{c} 23\%\\ 139 \rightarrow 143 \end{array}$
6	2.17	0.04	0.65	$\begin{array}{c} 39\% \\ 139 \rightarrow 141 \end{array}$
7	2.55	0.09	0.26	42% $139 \rightarrow 141$
8	2.63	0.03	0.18	$\begin{array}{c} 40\%\\ 135 \rightarrow 140 \end{array}$
9	2.81	0.02	0.01	$\begin{array}{c} 39\% \\ 139 \rightarrow 141 \end{array}$
10	2.82	0.03	0.00	$\begin{array}{c} 27\%\\ 139 \rightarrow 156 \end{array}$

Table S16. Computed singlet (E_S) and triplet (E_T) energies (eV), oscillator strength (*f*), dipole moment (μ, D) of *m*-PPI.

Reference

- [1] (a) M. Segal, M. Singh, K. Rivoir, S. Difley, T. V. Voorhis, M. A. Baldo, *Nat. Mater.*, 2007, 6, 374; (b) W. Barford, *Phys. Rev. B.*, 2004, 70, 205204.
- [2] W. Jiang, L. Duan Qiao, J. Org. Lett., 2011, 13, 3146.