SUPPLEMENTARY INFORMATION

Nano ferrite (AFe₂O₄, A = Zn, Co, Mn, Cu) as efficient catalysts for catalytic ozonation of toluene Hongbin Jiang, Xiaochen Xu*, Rao Zhang, Yun Zhang*, Jie Chen, Fenglin Yang

Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education,

School of Environmental Science and Technology, Dalian University of Technology, Linggong

road 2#, Dalian 116024, China.

Corresponding author:

Dr. Xiaochen Xu, Dalian University of Technology, Linggong road 2#, Dalian 116024, China.

Email: <u>xxcep@dlut.edu.cn</u>

Dr. Yun Zhang, Dalian University of Technology, Linggong road 2#, Dalian 116024, China.

Email: zhangyun@dlut.edu.cn

Number of pages: 21 Number of Figures: 12 Number of Tables: 7

Contents

Fig. S1. Schematic illustration of the synthesis of $AFe_2O_4 / \gamma - Al_2O_3$ catalysts.

Fig. S2. SEM image and the corresponding EDS pattern of as-synthesized γ-Al₂O₃ supports and

 AFe_2O_4/γ - Al_2O_3 catalysts.

Fig. S3. Corresponding pore size distribution of γ -Al₂O₃ supports.

Fig. S4. Corresponding pore size distribution of $ZnFe_2O_4/\gamma$ -Al₂O₃ catalysts.

Fig. S5. Corresponding pore size distribution of $CoFe_2O_4/\gamma$ -Al₂O₃ catalysts.

Fig. S6. Corresponding pore size distribution of $MnFe_2O_4/\gamma$ -Al₂O₃ catalysts.

Fig. S7. Corresponding pore size distribution of $CuFe_2O_4/\gamma$ -Al₂O₃ catalysts.

Fig. S8. XPS spectra of AFe₂O₄/ γ -Al₂O₃ catalysts, a) Zn 2P; b) Co 2p; c) Mn 2P, and d) Cu 2p.

Fig. S9. Pseudo-first-order kinetics fitting at various temperatures.

Fig. S10. $ZnFe_2O_4/\gamma$ -Al₂O₃ catalyst surface reaction process

Fig. S11. a) GC/MS analysis of catalyst surface residues; b) GC/MS analysis of produced gas.

Fig. S12. Impact of space velocity on carbon balance.

Table S1. The comparison of BET surface area, pore structure for γ -Al₂O₃ and the AFe₂O₄/ γ -

Al₂O₃ catalysts.

Table S2. Amounts and proportional relationship of BAS and LAS.

 Table S3. Comparison of parameters of reaction kinetic equations for toluene-catalyzed ozonation

 in different systems under the same reaction conditions.

Table S4. Reaction rate constant value (*k*) at each temperature.

Table S5. [O₃]_w(mg/m³) in sole ozonation and catalytic ozonation process, respectively.

Table S6. Summary of GC/MS results.

Fig. S1. Schematic illustration of the synthesis of $AFe_2O_4 / \gamma - Al_2O_3$ catalysts.

Fig. S2. SEM image and the corresponding EDS pattern of as-synthesized γ -Al₂O₃ supports and AFe₂O₄/ γ -Al₂O₃ catalysts.

Fig. S3. Corresponding pore size distribution of γ -Al₂O₃ supports.

Fig. S4. Corresponding pore size distribution of $ZnFe_2O_4/\gamma$ -Al $_2O_3$ catalysts.

Fig. S5. Corresponding pore size distribution of $CoFe_2O_4/\gamma$ -Al₂O₃ catalysts.

Fig. S6. Corresponding pore size distribution of $MnFe_2O_4/\gamma$ -Al₂O₃ catalysts.

Fig. S7. Corresponding pore size distribution of $CuFe_2O_4/\gamma$ -Al₂O₃ catalysts.

Fig. S8. XPS spectra of AFe₂O₄/γ-Al₂O₃ catalysts, a) Zn 2P; b) Co 2p; c) Mn 2P, and d) Cu 2p.

Fig. S9. Pseudo-first-order kinetics fitting at various temperatures.

Fig. S10. $ZnFe_2O_4/\gamma$ -Al₂O₃ catalyst surface reaction process

Fig. S11. a) GC/MS analysis of catalyst surface residues; b) GC/MS analysis of produced gas.

Fig. S12. Impact of space velocity on carbon balance.

01	$\mathbf{C} = \left(\begin{array}{c} 2 \\ \end{array} \right)$ $\mathbf{D} = \left[\begin{array}{c} 1 \\ 1 \\ \end{array} \right] \left(\begin{array}{c} 3 \\ \end{array} \right)$		Average pore
Sample	$S_{BET}(m^2/g)$ Pore volum	Pore volume (cm ³ /g)	diameter (nm)
γ-Al ₂ O ₃	320	0.617	30.66
$ZnFe_2O_4/\gamma$ - Al_2O_3 catalysts	300	0.615	32.66
$CoFe_2O_4/\gamma$ - Al_2O_3 catalysts	286	0.589	32.96
$MnFe_2O_4/\gamma$ - Al_2O_3 catalysts	245	0.513	32.99
$CuFe_2O_4/\gamma$ - Al_2O_3 catalysts	154	0.294	34.56

Table S1. The comparison of BET surface area, pore structure for γ -Al₂O₃ and the AFe₂O₄/ γ -Al₂O₃ catalysts.

Samplas	1	150 °C, μmol/g		
Samples	LAS	BAS	B/L	Total
γ-Al ₂ O ₃	61.8	1.2	0.019	63.0
$ZnFe_2O_4/\gamma$ - Al_2O_3 catalyst	71.9	1.5	0.021	73.4
$CoFe_2O_4/\gamma$ - Al_2O_3 catalyst	68.3	1.1	0.017	69.4
$MnFe_2O_4/\gamma$ - Al_2O_3 catalyst	32.6	0.4	0.011	33.0
$CuFe_2O_4/\gamma$ - Al_2O_3 catalyst	60.7	0.9	0.14	61.6

Table S2. Amounts and proportional relationship of BAS and LAS.

Kinetics equation	Zero order		pseudo-first order		
	Rate Constant/K	R ²	Rate Constant/K	R ²	
Sole O ₃	1584	0.2978	0.1171	0.9073	
γ -Al ₂ O ₃ +O ₃	9070	0.8917	0.3430	0.9875	
ZnFe ₂ O ₄ /γ-Al ₂ O ₃ +O ₃	27708	0.9171	0.6419	0.9184	
CoFe ₂ O ₄ /γ-Al ₂ O ₃ +O ₃	22574	0.9073	0.5951	0.9241	
MnFe ₂ O ₄ /γ-Al ₂ O ₃ +O ₃	8864	0.7152	0.3574	0.7736	
CuFe ₂ O ₄ /γ-Al ₂ O ₃ +O ₃	9483	0.8874	0.3748	0.8876	

Table S3. Comparison of parameters of reaction kinetic equations for toluene-catalyzed ozonation in different systems under the same reaction conditions.

Table S4. Reaction rate constant value (*k*) at each temperature.

Table 54. Reaction falle constant value (ii) at each temperature.						
Temperature (K)	288	293	298	303	308	
k	0.7961	1.0280	1.0261	2.3989	2.4812	

Initial ozone concentration (mg/L)	Sole O ₃	γ-Al ₂ O ₃ +O ₃	ZnFe ₂ O ₄ /γ-Al ₂ O ₃ +O ₃
5	4.12	0	0
10	9.17	5.31	1.57
15	13.96	11.88	4.92
20	18.41	18.38	5.04

Table S5. $[O_3]_w(mg/m^3)$ in sole ozonation and catalytic ozonation process, respectively.

Label	Molecular	Molecular structure	Name of Compound
	formula		
1	CH ₄ O	CH ₃ OH	Methanol
2	$C_2H_4O_2$		Methyl formate
3	C ₂ H ₆ O	ОН	Ethanol
4	$C_2H_4O_2$	ОН	Acetic acid
5	C_6H_6		Benzene
6	C_7H_8		Toluene
7	C7H6O		Benzaldehyde
8	C ₈ H ₁₀ O		Benzyl methyl ether

Table S6. Summary of GC/MS results.

