Electronic supplementary information (ESI[†]) Catalysis with magnetically retrievable and recyclable nanoparticles layered with Pd(0) of C-C/C-O coupling in water

Alpesh K. Sharma^a, Hemant Joshi^{a,b} and Ajai K. Singh^{a*}

^aDepartment of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.

^bPresent address: Department of Chemistry, School of Chemical Sciences and Pharmacy,

Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India

Table of contents	Page No.
S1. Size distribution graph of Fe ₃ O ₄ @SiO ₂ @SePh@Pd(0) NPs	3
S2. SEM-EDX data of Fe ₃ O ₄ @SiO ₂ @SePh@Pd(0) NPs	3
S3. SEM-EDX data of of recycled Fe ₃ O ₄ @SiO ₂ @SePh@Pd(0) NPs	4
S4. Size distribution graph of recycled Fe ₃ O ₄ @SiO ₂ @SePh@Pd(0) NPs	4
S5. Comparison table with heterogeneous catalyst	5
S6. NMR spectral data of compounds	6-7
S7. References	7-8

S1. Size distribution graph of Fe₃O₄@SiO₂@SePh@Pd(0) NPs

Figure S1 Size distribution graph of Fe₃O₄@SiO₂@SePh@Pd(0) NPs.

S2. SEM-EDX Data

Figure S2 SEM-EDX of Fe₃O₄@SiO₂@SePh@Pd(0) NPs.

S3. SEM-EDX of recycled Fe₃O₄@SiO₂@SePh@Pd(0) NPs

Figure S3 SEM-EDX of recycled Fe₃O₄@SiO₂@SePh@Pd(0) NPs.

S4. Size distribution graph of recycled Fe₃O₄@SiO₂@SePh@Pd(0) NPs

Figure S4 Size distribution graph of recycled Fe₃O₄@SiO₂@SePh@Pd(0) NPs

S5. Comparison table with heterogeneous catalyst

Table S1: Comparison table with heterogeneous catalysts reported in literature for C-O coupling reaction

S. No	Catalyst	Catalyst Loading	Time	Solvent	Substrate
1	Fe ₃ O ₄ @SiO ₂ @SePh@Pd(0) NPs (Present Catalyst	0.01-01 mol%	6 h	H ₂ O	ArCl/Br/I
2	Pd-ZnFe ₂ O ₄	10 mg,	4-5 h	DMSO	ArCl/Br/I
3	$Fe_3O_4@SiO_2@PPh_2@Pd(0)$	1.5 mol%,	1.5-7 h	H ₂ O	ArCl/Br/I
4	Maghemite-copper nanocomposites	4.7 mol%,	24 h	DMF	ArI
5	NiFe ₂ O ₄	10 mol%,	10 h	1,4 Dioxane	ArI
6	CNT@a-Fe ₂ O ₃ @CuO	1.85 mol%,	1-10 h	DMF	ArBr/I
7	CuFe ₂ O ₃	10 mol%,	10-24 h	DMF	ArBr/I

Table S2: Comparison table with heterogeneous catalyst reported in literature for SMC

S.No	Catalyst	Catalyst Loading	Time (h)	Solvent	Substrate
1	Present Catalyst Fe ₃ O ₄ @SiO ₂ @SePh@Pd(0) NPs	0.01-0.1 mol%	6 h	H ₂ O	ArBr/Cl/I
2	Pd–Fe ₃ O ₄ heterodimer nanocrystals	1 mol%,	24h	DME:H ₂ O	ArBr/I
3	Pd@Mag-MSN	1 mol%	6h	1,4 Dioxane	ArBr/I
4	Pd–CoFe ₂ O ₄ MNPs	1.6 mol%	6-12 h	Ethanol	ArBr/I
5	iron oxide supported palladium NHC complex	7.3 mol%	12h	DMF	ArBr/I
6	NiFe ₂ O ₄ -(dopamine)-Pd	8.54 mol%	20-36h	DMF	ArBr/Cl/I
7	silica supported palladium catalyst	2-6 mol%	2h	O-xylene	ArBr
8	Pd/C-cetyltrimethylammonium bromide (CTAB)	2.5 mol%	24h	H ₂ O	ArBr/Cl/I
9	layered double hydroxide (LDH) supported nanopalladium	1 mol%	10h	1,4 Dioxane:H ₂ O	ArCl
10	Pd-polyoxomatalate nanoparticles	1 mol%	12-16h	EtOH:H ₂ O	ArBr/Cl

111	mercaptopropyl-modified mesoporous supported palladium catalyst	silica	1 mol%	24h	DMF:H ₂ O	ArBr/Cl
-----	---	--------	--------	-----	----------------------	---------

S6. NMR spectral data of compounds

NMR Data of products of C-O coupling reaction-

4-phenoxybenzaldehyde:¹ Yellow liquid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): δ (ppm): 9.92 (s, 1H), 7.84-7.86 (d, 2H), 7.40-7.45 (t, 2H), 7.20-7.26 (m, 1H), 7.05-7.11 (t, 4H).

4-phenoxybenzonitrile:¹ White Solid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si):7.49-7.55 (m, 2H), 7.30-7.35 (t, 2H), 7.11-7.17 (t, 1H), 6.96-6.98 (d, 2H), 6.90-6.93(d, 2H).

1-Nitro-4-phenoxybenzene:² Yellow Solid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): 8.11-8.14 (d, 2H), 7.34-7.40 (t, 2H), 7.16-7.21 (t, 1H), 7.01-7.03 (d, 2H), 6.92-6.95 (d, 2H).

1-(4-phenoxyphenyl)ethanone:¹ White Solid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): 7.91-7.96 (d, 2H), 7.36-7.42 (t, 2H), 7.19-7.22 (t, 1H), 7.06-7.08 (d, 2H), 6.97-7.02 (d, 2H), 2.57 (s, 3H).

2-phenoxybenzaldehyde:¹ Yellow liquid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): 10.45 (s, 1H), 7.85-7.88 (d, 1H), 7.41-7.47 (t, 1H), 7.30-7.35 (t, 2H), 7.10-7.14 (t, 2H), 6.98-7.01 (d, 2H), 6.81-6.84 (d, 1H).

1-(2-phenoxyphenyl)ethanone:² Colorless oil. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): 7.83-7.86 (d, 1H), 7.35-7.45 (m, 3H), 7.15-7.20 (m, 2H), 7.01-7.03 (d, 2H) 6.90-6.92 (d, 2H) 2.64 (s, 3H).

Diphenyl ether:² Colorless liquid. ¹H NMR(300 MHz, CDCl₃, 25°C vs Me₄Si): 7.24-7.28 (t, 4H), 7.02-7.05 (t, 2H), 6.93- 6.95 (d, 4H).

1-Methyl-4-phenoxybenzene:² Colorless liquid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): 7.46-7.48 (m, 2H), 7.23-7.26 (t, 2H), 7.06- 7.07 (m, 1H), 6.98-7.04 (m, 2H), 6.89-6.91 (m, 2H), 2.26 (s, 3H).

1-Methoxy-4-phenoxybenzene:³ Colorless liquid. 1H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): 7.25-7.32 (m, 2H), 7.01-7.06 (t, 1H), 6.93- 7.01 (m, 4H), 6.86-6.90 (m, 2H), 3.81 (s, 3H).

NMR Data of products of Suzuki-Miyaura coupling reaction-

4–Phenylbenzaldehyde:⁴ Light yellow solid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): δ 10.06 (s, 1H),7.95 (d, J = 8.4 Hz, 2H),7.75 (d, J = 8.4 Hz, 2H),7.63–7.65 (m, 2H),7.39–7.51 (m, 3H). 1

4-Phenylbenzonitrile:⁵ Pale yellow solid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): δ 7.54–7.61 (m, 4H), 7.49–7.52 (m, 2H), 7.34–7.45 (m, 3H).

4-Nitrobiphenyl:⁶ Pale yellow solid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): δ 8.27 (d, J = 9.0 Hz, 2H), 7.71 (d, J = 9.0 Hz, 2H), 7.61 (d, J = 8.4 Hz, 2H), 7.41–7.51 (m, 3H).

4–Acetylbiphenyl:⁶ White solid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): 8.02 (d, J = 8.4 Hz, 2H), 7.60–7.68 (m, 4H), 7.38–7.48 (m, 3H), δ 2.62 (s, 3H).

Biphenyl:⁶ White solid: ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): 7.58 (d, J = 6.9 Hz, 4H),7.42 (t, J = 7.5 Hz, 4H), δ 7.33 (t, J = 7.5 Hz, 2H).

4-Methylbiphenyl:⁶ Colorless solid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): 7.55–7.58 (m, 2H),7.48 (d, J = 8.1 Hz, 2H),7.38–7.42 (m, 2H),7.27–7.32 (m, 1H),7.23 (d, J = 7.8 Hz, 2H),δ 2.37 (s, 3H).

4-Methoxybiphenyl:^{6,7} White solid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): 7.50–7.55 (m, 4H), 7.40 (t, J = 7.2 Hz, 2H),7.28–7.31 (m, 1H),6.96 (d, J = 8.4 Hz, 2H),δ 3.82 (s, 3H).

4–Phenylpyridine:⁸ Brown solid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): 8.65 (d, J = 5.4 Hz, 2H),7.62 (d, J = 8.1 Hz, 2 H),δ 7.40–7.50 (m, 5H).

2–Phenylpyridine:⁸ Colourless liquid; ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si) δ 8.70 (s, 1H), 8.00 (d, J = 7.0 Hz, 2H), 7.74 (s, 2H), 7.55–7.38 (m, 4H), 7.24 (d, J = 6.4 Hz, 1H);

S7. References

- 1 T. Hu, T. Schulz, C. Torborg, X. Chen, J. Wang, M. Beller, J. Huang, Chem. Commun., 2009, 7330.
- 2 Q. Zhang, D. Wang, X. Wang, K. Ding, J.Org. Chem., 2009, 74, 7187.
- 3 H. Joshi, K. N. Sharma, A. K. Sharma, O. Prakash and A. K. Singh, *Chem. Commun.*, 2013, 49, 7483.
- 4 R. K. Arvela, N. E. Leadbeater, Org. Lett. 2005, 7, 2101.
- 5 B.Tao, D. W. Boykin, J.Org. Chem. 2004, 69, 4330.

- 6 G. M. Scheuermann, L. Rumi, P.Steurer, W. Bannwarth, R.Mulhaupt, J. Am. Chem. Soc. 2009, 131, 8262.
- 7 B.V. Martinez, A. G. de Viedma, C.Burgos, B. J. Alvarez, Org. Lett., 2000, 2, 3933.
- 8 S. Doherty, J. G. Knight, J P Mcgrady, A M Ferguson, N a B Ward, R W Harrington, W. Clegg, *Adv. Synth. Catal.* 2010, **352**, 201.