Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

> Electronic Supplementary Information (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Exploring intermolecular contacts in multi-substituted benzaldehyde derivatives: X-ray, Hirshfeld surface and Lattice energy analyses

Siya T. Hulushe,^{*a} Meloddy H. Manyeruke,^a Marcel Louzada,^a Sergei Rigin,^b Eric C. Hosten,^c and Gareth M. Watkins,^a

^aDepartment of Chemistry, Rhodes University, P.O. Box 94, Grahamstown, South Africa.

^bDepartment of Chemistry, New Mexico Highlands University, Las Vegas, New Mexico, 87701, USA

^cDepartment of Chemistry, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa.

Corresponding Author's email: g11h7156@campus.ru.ac.za

Table S1. Table showing relationship between AA-CLP, DFT total energy (E_{tot}) calculations and thermal strengths of the title compounds.

		- F	-ex-rep	LTot	LTot	E _{Tot} ⁻	remp. ∕°C
1 -28.1	-19.2	-126.4	50.6	-126.3	-48.9	-56.4	52
2 -20.2	-25.2	-136.1	50.7	-130.8	-39.7	-48.1	69
3 -16.0	-16.8	-148.6	59.0	-122.4	-32.2	-40.4	79
4 -23.5	-18.4	-137.2	51.1	-127.9	-36.6	-44.8	70
5 -20.6	-14.1	-156.2	65.0	-125.8	-25.9	-35.0	100
6 -23.5	-20.1	-101.9	51.3	-94.20	-45.4	-56.3	67

Fig. S1. Showing a direct relationship between DFT total energy (E_{tot}) calculations and thermal strengths of the title compounds

			B3LYP		
Compound	LE (a.u)	LE (eV)	LE (eV/molecule)	LE (kJ/molecule)	LE (kJ/mole)
1	-0.130407103	-3.548559839	-0.50693712	-8.12215E-23	-4.89E+01
2	-0.151038133	-4.109959052	-0.410995905	-6.58498E-23	-3.97E+01
3	-0.110461332	-3.005807496	-0.333978611	-5.35101E-23	-3.22E+01
4	-0.111610508	-3.037078164	-0.37963477	-6.08251E-23	-3.66E+01
5	-0.088843241	-2.417548971	-0.268616552	-4.30377E-23	-2.59E+01
6	-0.086513102	-2.354142624	-0.470828525	-7.54361E-23	-4.54E+01
CUBNUC	-0.2062925	-5.613507734	-0.701688467	-1.12425E-22	-6.77E+01
CUNMAZ	-0.03223413	-0.877135805	-0.292378602	-4.68449E-23	-2.82E+01
DUTRIU	-0.144714227	-3.937876711	-0.562553816	-9.01324E-23	-5.43E+01
DUTRIU01	-0.130339764	-3.546727454	-0.506675351	-8.11795E-23	-4.89E+01
DUTRIU02	-0.149801078	-4.076297046	-0.582328149	-9.33006E-23	-5.62E+01
EROHUP	-0.233339889	-6.349505053	-0.705500561	-1.13035E-22	-6.81E+01
KERDUH	-0.138977571	-3.781774287	-0.54025347	-8.65594E-23	-5.21E+01
IPEXEH	-0.255785667	-6.96028609	-0.580023841	-9.29314E-23	-5.60E+01
LELQUQ	-0.149723125	-4.074175844	-0.50927198	-8.15956E-23	-4.91E+01
LELRAX	-0.121507167	-3.306380115	-0.551063353	-8.82914E-23	-5.32E+01
MEQLIE	-0.068263333	-1.857540869	-0.61918029	-9.92051E-23	-5.97E+01
POMLUA	-0.121892	-3.316851969	-0.473835996	-7.5918E-23	-4.57E+01
VOQFIS	-0.0801145	-2.180027705	-0.363337951	-5.8214E-23	-3.51E+01
XEVROF	-0.00036302	-0.00987829	-0.059269739	-9.4962E-23	-5.72E+01
XIMPAL	-0.16130975	-4.389464131	-0.548683016	-8.791E-23	-5.29E+01

 Table S2a. Crystal lattice energies (kJ/mol) calculated using B3LYP DFT methods for various compounds.

			M06-HF		
	LE (a.u)	LE (eV)	LE (eV/molecule)	LE (kJ/molecule)	LE (kJ/mole)
1	-0.150440454	-4.093695378	-0.584813625	-9.37E-23	-5.64E+01
2	-0.183134529	-4.983346922	-0.498334692	-7.98E-23	-4.81E+01
3	-0.138380373	-3.765523691	-0.418391521	-6.70E-23	-4.04E+01
4	-0.136492018	-3.714138885	-0.464267361	-7.44E-23	-4.48E+01
5	-0.11998112	-3.264854249	-0.362761583	-5.81E-23	-3.50E+01
6	-0.107283796	-2.919342286	-0.583868457	-9.35E-23	-5.63E+01
CUBNUC	-0.2309295	-6.283914996	-0.785489375	-1.26E-22	-7.58E+01
CUNMAZ	-0.029015353	-0.789548377	-0.263182792	-4.22E-23	-2.54E+01
DUTRIU	-0.001003586	-0.027308989	-0.191162923	-1.03E-22	-6.18E+01
DUTRIU01	-0.000245402	-0.006677724	-0.046744065	-9.35E-23	-5.63E+01
DUTRIU02	-0.000355113	-0.00966313	-0.067641907	-8.12E-23	-4.89E+01
EROHUP	-0.060858333	-1.656040452	-0.184004495	-2.95E-23	-1.78E+01
KERDUH	-0.152014714	-4.136533196	-0.590933314	-9.47E-23	-5.70E+01
IPEXEH	-0.289101	-7.866842951	-0.655570246	-1.05E-22	-6.33E+01
LELQUQ	-0.205798125	-5.600055099	-0.700006887	-1.12E-22	-6.75E+01
LELRAX	-0.141651667	-3.854540162	-0.64242336	-1.03E-22	-6.20E+01
MEQLIE	-0.025709333	-0.699586953	-0.233195651	-3.74E-23	-2.25E+01
POMLUA	-0.122072	-3.321750021	-0.474535717	-7.60E-23	-4.58E+01
VOQFIS	-0.085835167	-2.335695054	-0.389282509	-6.24E-23	-3.76E+01
XEVROF	-0.000248663	-0.00676646	-0.04736522	-8.42E-23	-5.07E+01
XIMPAL	-0.18226825	-4.959774258	-0.619971782	-9.93E-23	-5.98E+01

 Table S2b. Crystal lattice energies (kJ/mol) calculated using M06-HF DFT methods for various compounds.

KEY: LE = Lattice Energy

Motif	D.C. †/(Å)	E _{Coul}	E _{Pol}	E _{Disp}	E_{Rep}	E _{Tot}	Symmetry	Important Interactions
				1				
1	12.99	-2.9	-1.0	-9.1	7.5	-7.0	x, -1+y, z	C23-H23-01=C1
2	8.50	-3.2	-0.5	-18.7	10.6	-13.4	1/2+x, 1/2-y, z	C25-H25O2-C2
3	7.96	-11.0	-3.2	-20.9	15.6	-22.6	3/2-x, -1/2+y,	C2–H2B…O1=C1
1/2+z								
4	4.67	-13.1	-2.5	-47.1	31.9	-37.0	1-x, 1-y, -1/2+z	С12–Н12…О2–С2; С26–Н26…π
5	8.86	-9.2	-3.1	-12.7	11.9	-15.8	-1/2+x, 3/2-y, z	C2–H2A…O1=C1; C12–H12…O1=C1
				2				
1	4.56	-7.6	-3.8	-69.1	39.5	-46.7	x, 1+y, z	С3–Н3А…О3–С3; С3–Н3А…π
2	11.53	-3.7	-0.5	-8.2	6.6	-7.3	1-x, -y, 1-z	H15…H15
3	9.90	-3.4	-0.9	-15.8	10.6	-11.4	x, 1/2-y, 1/2+z	С14–Н14…π
4	7.28	-10.3	-5.7	-21.3	16.0	-23.7	1-x, 1/2+y, 1/2-z	C1–H1…O1=C1; C2–H2A…O1=C1
5	10.12	-2.5	-0.7	-13.8	10.2	-8.9	x, 3/2-y, 1/2+z	С23–Н23…π
				3				
1	7.67	-10.9	-3.2	-17.7	18.5	-17.9	3/2-x, 1/2+y, 1/2-	C15–H15…O1=C1; C2–H2B…Br1
Z								
2	8.54	-13.5	-1.7	-32.2	32.9	-23.3	-1/2+x, 1/2-y,	π…π
1/2+z								
3	7.91	-8.5	-2.2	-18.4	15.0	-17.4	1/2-x, 1/2+y, 1/2-	C25–H25…Br1; C2–H2B…O1=C1
z								
4	10.07	-16.0	-4.9	-21.9	26.8	-23.0	-x, 1-y, 1-z	C23–H23···O1=C1; C24–H24···O1=C1
5	14.01	-1.4	-0.2	-5.6	4.2	-4.0	-3/2+x, 1/2-y,	C24–H24····Br1
1/2+z				•				
	0.04	2.6	0.2	4	<u> </u>	F 0	2/2: 4/2	
1	9.81	-2.6	-0.3	-7.1	6.4	-5.3	3/2+x, 1/2-y,	C25-H25···C11; C26-H26···C11
1/2+2	0.70	4.0	0.6	10.4	0 7	0.6	1/2 x 1/2 1	
2/27	9.79	-4.9	-0.0	-10.4	0.2	-9.0	1/2-x, -1/2+y,	C23-H25···CI1, C20-H20···CI1
3/2-2	4 92	-3.9	-23	-52 5	27 9	-34 3	1+x y z	lone nair…π
4	8.42	-9.8	-2.5	-6.5	5.1	-14.7	-1/2+x, 1/2-v.	C15-H15O1=C1: C16-H16O1=C1
1/2+z	0	510	2.0	0.0	0.12		-/-// -/- //	
5	7.70	-5.0	-2.1	-12.5	7.5	-13.1	1/2+x, 1/2-y,	C2–H2A…O1=C1
1/2+z								
6	6.56	-6.0	-1.1	-38.8	25.2	-25.4	1-x, 1-y, 1-z	lone pair…π ⁺⁺
7	9.04	-11.5	-2.3	-27.9	24.5	-23.1	2-x, 1-y, 1-z	C24-H24…O1=C1 **
				5				
1	9.79	-7.6	-0.2	-8.5	18.2	-4.4	-x, 1/2+y, 3/2-z	Br1…Br2
2	4.10	-23.0	-2.7	-75.2	68.3	-49.6	1+x, y, z	C2–H2B…O2–C2
3	10.23	-5.9	-0.6	-14.3	13.4	-10.9	1/2-x, 1-y, 1/2+z	С13–Н13…π
4	9.34	-4.5	-0.3	-12.1	10.7	-8.9	1-x, 1/2+y, 3/2-z	C26–H26…Br2
5	7.94	-20.2	-4.5	-18.0	21.2	-27.2	1/2+х, 3/2-у, 1-z	C2–H2A…O1=C1; lone pair…lone pair
6	10.61	-5.1	-0.6	-15.6	14.0	-10.8	3/2-х, 1-у, 1/2+z	C23–H23…Br1; C24–H24…Br2
				6				
1	4.70	-15.4	-3.4	-47.6	32.1	-40.4	-x, 1-y, 1-z	C14–H14…C4≡C3 ⁺⁺
2	7.88	-22.9	-5.1	-11.2	24.6	-22.6	-x, 1-y, 2-z	C4–H4…O1=C1; C3=C4…O1=C1 ⁺⁺
3	7.94	-4.8	-2.6	-12.6	8.0	-13.0	x, 1+y, z	C3–C2…O1=C1
4	7.55	-9.0	-2.4	-19.8	12.2	-21.0	1-x, -y, 1-z	C5–H5C…O2–C2 ⁺⁺ ;C5–H5C…O3–C5
								++
5	6.88	-2.9	-1.0	-20.3	12.3	-13.9	1-x, -y, 2-z	C2–H2A…O2–C2 ⁺⁺
6	4.59	-8.9	-2.2	-44.5	23.3	-35.4	1-x, 1-y, 1-z	C5–H5A…O1=C1 **
7	8.43	-2.3	-2.6	-7.5	6.3	-7.1	1-x, 1-y, 2-z	C1-H1…O1=C1 ⁺⁺

Table S3. Molecular pair interaction energies partitioned into Coulombic (E_{Coul}), polarization (E_{Pol}), dispersion (E_{Disp}), repulsion (E_{rep}) and total energy (E_{Tot}) contributions (kJ/mol) for **1–6**.

⁺Centroid distance; ⁺⁺Duplicated interactions

Fig.S2a 400 MHz ¹H NMR spectrum of compound 1 in CDCl₃

Fig. S2b 100 MHz ¹³C NMR spectrum of compound 1 in CDCl₃.

NMR

Fig. S3b 150 MHz ¹³C NMR spectrum of compound 2 in CDCl₃.

Fig.S4a 400 MHz ¹H NMR spectrum of compound 3 in CDCl₃.

Fig.S4b 100 MHz ¹³C NMR spectrum of compound 3 in CDCl₃.

Fig.S5a 400 MHz ¹H NMR spectrum of compound 4 in CDCl₃.

Fig.S5b 100 MHz ¹³C NMR spectrum of compound 4 in CDCl₃.

Fig.S6b 100 MHz ¹³C NMR spectrum of compound 5 in CDCl₃.

Fig.S7b 100 MHz ¹³C NMR spectrum of compound 6 in CDCl₃.

Electronic Supplementary Information (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2019

Fig. S8 Benzyloxybenzaldehydes than their analogous structures.