Supplementary Information

Preparation of carboxymethyl β-cyclodextrin polymer and its rapid adsorption performance for basic fuchsin

Hongyu Pu, ^a Peixiao Tang, ^{*a} Ludan Zhao, ^a Qiaomei Sun, ^a Yuanming Zhai, ^b

Zhiqiang Li, ^c Na Gan, ^a Yuanyuan Liu, ^a Xiuyun Ren, ^a and Hui Li ^{*a}

^a School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China

^b Analytical & Testing Center, Sichuan University, Chengdu 610064, PR China

^c China Tobacco Yunnan Industrial co., LTD., Kunming 650231, PR

^{*} Corresponding author. Tel.: +86 028 85405220; fax: +86 028 85401207. E-mail address: lihuilab@sina.com (H. Li); tangpeixiao@126.com (P. Tang)

Adsorbent	Water System	Adsorbe	Equilibriu	q _{max}	
		nt dose	m time	(mg/	References
		(g/L)	(min)	g)	
β-CDP-COOH	triple-				
	distilled				
	water with	1	1	70	This work
	pH value of				
	6				
bottom ash	water	4	105	7	1
deoiled soya	water	2	90	13	1
anionic polyacrylamide/graph ene oxide aerogels	deionized water	0.5	4200	1034	2
cation-exchange resin	purified water	1	25	114	3
gangue microspheres	unmentione d	20	60	24	4
Al-MCM-41	unmentione d	1	90	54	5
activated carbon/ferrospinel composite	unmentione d	2	30	101	6
βcyclodextrin– carboxymethyl	unmentione	15	150	59	7
ovido composito	u				
B-cyclodextrin-	double-	1	90	64	8

Table S1. Comparison of the adsorption equilibrium time of some new adsorbents for removal BF.

styrene-based	distilled				
polymer	water				
maleamic acid cross-	purified water		80	28	
linked β-cyclodextrin		3.3			9
polymer					

Table S2. Water regain analysis of β -CDP and β -CDP-COOH (data were determined from the average of three measurements).

Polymers	$W_{ m d}$	$W_{ m w}$	Water regain
β-CDP	3.68	6.50	76.66%
β-CDP-COOH	3.85	8.15	111.69%

Fig. S1 SEM images of (A) β-CDP (600×), (B) β-CDP (2400×), (C) β-CDP-COOH

Fig. S2 N₂ adsorption–desorption isotherms and surface area data analysis of β -CDP and β -CDP-COOH.

Fig. S3 Zeta potential of β -CDP, β -CDP-COOH before and after adsorption.

Fig. S4 Plots of (A) pseudo-first-order kinetics and (B) pseudo-second-order kinetics.

Fig. S5 Fitting curve of BF adsorption isotherms onto β -CDP (a) and β -CDP-COOH (b) of the Langmuir, Freundlich, Temkin, and Dubnin–Radushkevich (D-R) isotherm models.

References

- V. K. Gupta, A. Mittal, V. Gajbe and J. Mittal, *J. Colloid Interf. Sci.*, 2008, **319**, 30-39.
- 2 X. Yang, Y. Li, Q. Du, J. Sun, L. Chen, S. Hu, Z. Wang, Y. Xia and L. Xia, J. Colloid Interf. Sci., 2015, 453, 107-114.
- 3 G. Bayramoglu, B. Altintas and M. Y. Arica, Chem. Eng. J., 2009,152, 339-346.
- 4 S. Yan, Y. Pan, L. Wang, J. Liu, Z. Zhang, W. Huo, J. Yang and Y. Huang, *J. Adv. Ceram.*, 2018,7, 30-40.
- 5 Y. Guan, S. Wang, X. Wang, C. Sun, Y. Wang and L. Hu, *Micropor. Mesopor. Mat.*, 2018, **265**, 266-274.
- 6 L. Ai and J. Jiang, Desalination, 2010, 262, 134-140.
- 7 J. Yuan, F. Qiu and P. Li, J. Iran. Chem. Soc., 2017, 14, 1827-1837.
- 8 X. Li, L. Xie, X. Yang and X. Nie, RSC Adv., 2018, 8, 40321-40329.
- 9 X. Zhang, H. Li, M. Cao and C. Chen, Adv. Mater. Res., 2014, 937, 9-16.