Electronic Supplementary Material (ESI) This journal is © The Royal Society of Chemistry

Electronic Supplementary Information (ESI)

TiO_2 Nanofibres Decorated with Green Synthesized $P_{Au/Ag}$ @CQDs for Efficient Photocatalytic Degradation of Organic Dyes and Pharmaceutical Drugs

Anupma Thakur^{a,b}, Praveen Kumar^{c,**}, Devinder Kaur^b, Nagaraju Devunuri^d, R.K. Sinha^b, and Pooja Devi^{b,*}

^aAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India

^bCSIR-Central Scientific Instruments Organisation, Sector-30 C, Chandigarh-160030, India

^cSchool of Materials Science, Indian Association for the Cultivation of Science, Kolkata -700030, India

^dVignan's Foundation for Science, Technology & Research, Guntur, Andhra Pradesh – 522213, India

ESI Table S1: Literature reports on the use of CQDs as photosensitizers for dyes degradation

applications

Photocatalyst	Dye	% of Degradation	Time	Ref.
NCQDs/TiO ₂	RhB	95%	30min	1
CQD/P-25	p-nitrophenol	89% - 96%	240min	2
CQD/N-ZnO	MG, MB, fluorescein dye	80%	30-45min	3
CQD/TiO ₂	MB	100%	95min	4
CQD/H-TiO ₂	МО	86%	25min	5
TiO ₂ /CQD	MB	100%	45min	6
CQD/N-ZnO	MG	100%	30min	7
CQD-ZnO	RhB	100%	175min	8
TiO ₂ -CQDs	RhB	100%	75min	9
CQD/BiOCl	RhB,Bisphenol	91%	120min	10
N-CD/TiO ₂ IOS	MB	97.1%	50min	11
CD/CuWO ₄	RhB	88.09%	1.2hr	12
CQD/meso-Ti-450	MB	98%	1hr	13
CQD/BiO _X (X=Cl,Br)	RhB	100%	30min	14
ZnO/CQD	RhB	83%	105min	15
$CD/g-C_3N_4$	RhB	100%	240min	16
NCQD/TiO ₂	MB	86.9%	420min	17
CQD/N-ZnO	MG	99%	30min	18
CD/TiO ₂ -600	MB	71%	120min	19
CQD/Ag ₃ PO ₄	MB	100%	70min	20
NCQDs/Ag ₃ PO ₄	МО	98%	18min	21

Figure S 1: Research trends in photocatalytic degradation of pharmaceutical drugs focusing on UV-Visbile photocatalysts.

Figure S2: SEM of fibrous TiO₂ nanostructures

Figure S3: TEM of fibrous $P_{M}\mbox{-}CQDs$ (where M: Au and Ag) decorated TiO_2 nanofibers

Figure S4: UV-Vis absorption spectra of MB dye (10 ppm) suspension in the presence of the different loading concentrations i.e. 1 mg/mL and 0.5 mg/mL, of the P_{Au} -CQDs/TiO₂ and P_{Ag} -CQDs/TiO₂ catalyst, respectively.

Figure S5: Effect of MB dye concentration, i.e. (a) 1 ppm, and (b) 20 ppm, on the optimized P_{Au}-CQDs/TiO₂ photocatalyst concentration as a function of irradiation time.

Figure S 6: Reusability of the P_{Au}-CQDs/TiO₂ photocatalyst.

Figure S 7: Pseudo first-order kinetic model representing (a) kinetics and (b) effect of catalyst concentration on MB dye degradation.

Figure S 9: TiO₂ nanofibers response as photocatalyst for pharmaceutical drug degradation

Figure S 10: Time-dependent photoluminescence spectra of P_{Au}@CQDs

References

- 1. Y.-Q. Zhang, D.-K. Ma, Y.-G. Zhang, W. Chen and S.-M. Huang, *Nano Energy*, 2013, **2**, 545-552.
- 2. F. Zheng, Z. Wang, J. Chen and S. Li, RSC Advances, 2014, 4, 30605-30609.
- 3. S. Muthulingam, I.-H. Lee and P. Uthirakumar, *Journal of colloid and interface science*, 2015, **455**, 101-109.
- 4. P. S. Saud, B. Pant, A.-M. Alam, Z. K. Ghouri, M. Park and H.-Y. Kim, *Ceramics International*, 2015, **41**, 11953-11959.
- J. Tian, Y. Leng, Z. Zhao, Y. Xia, Y. Sang, P. Hao, J. Zhan, M. Li and H. Liu, *Nano Energy*, 2015, 11, 419-427.
- N. A. Travlou, M. Algarra, C. Alcoholado, M. Cifuentes-Rueda, A. M. Labella, J. M. Lázaro-Martínez, E. Rodríguez-Castellón and T. J. Bandosz, ACS Applied Bio Materials, 2018, 1, 693-707.
- 7. S. Muthulingam, K. B. Bae, R. Khan, I.-H. Lee and P. Uthirakumar, *RSC Advances*, 2015, **5**, 46247-46251.
- 8. X.-Y. Zhang, J.-K. Liu, J.-D. Wang and X.-H. Yang, *Industrial & Engineering Chemistry Research*, 2015, **54**, 1766-1772.
- 9. W. Wang, Y. Ni and Z. Xu, Journal of Alloys and Compounds, 2015, 622, 303-308.
- 10. J. Di, J. Xia, M. Ji, B. Wang, S. Yin, Q. Zhang, Z. Chen and H. Li, ACS applied materials & interfaces, 2015, 7, 20111-20123.
- 11. W. Zhang, X. Zhang, Z. Zhang, W. Wang, A. Xie, C. Xiao, H. Zhang and Y. Shen, *Journal of the Electrochemical Society*, 2015, **162**, H638-H644.
- 12. P. ReddyPrasad and E. B. Naidoo, Journal of Molecular Structure, 2015, 1098, 146-152.
- 13. R. Miao, Z. Luo, W. Zhong, S.-Y. Chen, T. Jiang, B. Dutta, Y. Nasr, Y. Zhang and S. L. Suib, *Applied Catalysis B: Environmental*, 2016, **189**, 26-38.

- 14. J. Xia, J. Di, H. Li, H. Xu, H. Li and S. Guo, *Applied Catalysis B: Environmental*, 2016, **181**, 260-269.
- 15. H. Bozetine, Q. Wang, A. Barras, M. Li, T. Hadjersi, S. Szunerits and R. Boukherroub, *Journal of colloid and interface science*, 2016, **465**, 286-294.
- 16. S. Fang, Y. Xia, K. Lv, Q. Li, J. Sun and M. Li, *Applied Catalysis B: Environmental*, 2016, **185**, 225-232.
- 17. J. Zhang, X. Zhang, S. Dong, X. Zhou and S. Dong, *Journal of Photochemistry and Photobiology* A: Chemistry, 2016, **325**, 104-110.
- 18. S. Muthulingam, K. B. Bae, R. Khan, I.-H. Lee and P. Uthirakumar, *Journal of environmental chemical engineering*, 2016, **4**, 1148-1155.
- 19. Y. Hou, Q. Lu, H. Wang, H. Li, Y. Zhang and S. Zhang, Materials Letters, 2016, 173, 13-17.
- 20. H. Zhang, H. Huang, H. Ming, H. Li, L. Zhang, Y. Liu and Z. Kang, *Journal of Materials Chemistry*, 2012, **22**, 10501-10506.
- 21. C. Zhu, Y. Zhao, L. Fang, J. Zheng, P. Hu, Y. Liu, X. Cao, Z. Chen, W. Wu and M. Wu, *Materials Letters*, 2017, **188**, 304-307.