Supporting Information

Temperature Controlled Condensation of Nitriles: Efficient and Convenient Synthesis of β-Enaminonitriles, 4-Aminopyrimidines

and 4-Amidinopyrimidines in One System

Yinghua Li, Yingzu Zhu, Shiqun Xiang, Weibin Fan, Jiang Jin and Deguang Huang*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China E-mail: dhuang@fjirsm.ac.cn

Table of Contents

1. Characterization Data of Products 1	-13
2. ¹ H NMR and ¹³ C NMR of Products ······	14-86
3. X-ray crystal structures of compounds 2j, 4a and 5e	87
4. Synthesis and Characterization of 2,3,3-triphenylacrylonitrile	37-88

1. Characterization Data for the Products

(*E*)-3-amino-2,4-diphenylbut-2-enenitrile (2a): yield, 86% (40 mg); white solid; $R_f = 0.33$ in

25% acetone in petroleum ether; melting point, 112-113°C; ¹H NMR (400 MHz, CDCl₃) δ

7.39–7.34 (m, 4H), 7.32 (dd, J = 7.8, 3.9 Hz, 4H), 7.28 (ddd, J = 8.9, 6.3, 3.0 Hz, 1H), 7.22 (ddd, J = 11.4, 5.5, 2.6 Hz, 1H), 4.65 (s, 2H), 3.87 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.90, 135.93, 133.39, 129.35, 129.08, 128.99, 128.61, 127.56, 127.35, 122.13, 81.55, 40.44. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd For C₁₆H₁₄N₂Na, 257.1055; found, 257.1049.

(*E*)-2,4-di([1,1'-biphenyl]-4-yl)-3-aminobut-2-enenitrile (**2b**): yield, 85% (66 mg); gummy liquid; $R_f = 0.35$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.56 (m, 9H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.46 (t, *J* = 7.9 Hz, 6H), 7.38 (t, *J* = 7.2 Hz, 2H), 4.71 (s, 2H), 4.01 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.82, 140.66, 140.56, 140.39, 140.19, 134.91, 132.45, 129.54, 129.00, 128.97, 128.96, 128.05, 127.88, 127.64, 127.58, 127.13, 127.07, 121.98, 81.75, 40.28. HRMS (ESI-TOF) *m*/*z* [M+Na]⁺ calcd For C₂₈H₂₂N₂Na, 409.1681; found, 409.1676.

(*E*)-3-amino-2,4-di-p-tolylbut-2-enenitrile (**2c**): yield, 74% (39 mg); pale red oil; $R_f = 0.38$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.30 (m, 2H), 7.28 (d, *J* = 7.9 Hz, 2H), 7.21 (dd, *J* = 11.5, 7.9 Hz, 4H), 4.65 (s, 2H), 3.89 (s, 2H), 2.38 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 156.92, 137.17, 137.08, 132.91, 130.38, 129.97, 129.71, 128.89, 128.48, 122.30, 81.19, 39.96, 21.19, 21.11. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₁₈H₁₈N₂Na, 285.1368; found, 285.1362.

(E)-3-amino-2,4-bis(4-(tert-butyl)phenyl)but-2-enenitrile (2d): yield, 71% (49 mg); white

solid; $R_f = 0.48$ in 25% acetone in petroleum ether; melting point, 170-171°C; ¹H NMR (400

MHz, CDCl₃) δ 7.43 – 7.40 (m, 2H), 7.39 – 7.37 (m, 2H), 7.37 – 7.33 (m, 2H), 7.29 – 7.25 (m, 2H), 4.54 (s, 2H), 3.90 (s, 2H), 1.32 (d, *J* = 1.8 Hz, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 156.65, 150.63, 150.43, 132.89, 130.55, 128.83, 128.35, 126.32, 126.10, 122.15, 81.88, 40.02, 34.72, 34.65, 31.45, 31.38. HRMS (ESI-TOF) *m*/*z* [M+Na]⁺ calcd For C₂₄H₃₀N₂Na, 369.2307; found, 369.2301.

(*E*)-3-amino-2,4-bis(4-methoxyphenyl)but-2-enenitrile (**2e**): yield, 70% (41 mg); gummy liquid; $R_f = 0.33$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.29 (m, 2H), 7.28 – 7.23 (m, 2H), 6.94 – 6.87 (m, 4H), 4.43 (s, 2H), 3.85 (s, 2H), 3.80 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 159.13, 158.85, 156.78, 130.21, 130.17, 127.95, 125.51, 122.18, 114.82, 114.56, 81.35, 55.45, 39.52. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₁₈H₁₈O₂N₂Na, 317.1266; found, 317.1261.

(*E*)-3-amino-2,4-bis(4-bromophenyl)but-2-enenitrile (**2f**): yield, 73% (57 mg); colorless oil; $R_f = 0.38$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.45 (m, 4H), 7.28 – 7.24 (m, 2H), 7.22 (d, *J* = 8.3 Hz, 2H), 4.61 (s, 2H), 3.84 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.43, 134.68, 132.65, 132.36, 130.72, 130.35, 121.82, 121.42, 121.33, 81.38, 40.03. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd For C₁₆H₁₂N₂Br₂Na, 412.9265; found, 412.9259.

(*E*)-3-amino-2,4-bis(4-chlorophenyl)but-2-enenitrile (**2g**): yield, 72% (44 mg); yellow oil; $R_f = 0.38$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.23 (m, 8H), 4.69 (s, 2H), 3.83 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.82, 134.22, 133.55, 133.16, 131.62, 130.26, 129.96, 129.59, 129.24, 121.60, 80.71, 39.82. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₁₆H₁₂Cl₂N₂Na, 325.0275; found, 325.0270.

(*E*)-3-amino-2,4-bis(4-fluorophenyl)but-2-enenitrile (**2h**): yield, 63% (34 mg); gummy liquid; $R_f = 0.33$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.34 (m, 2H), 7.34 – 7.28 (m, 2H), 7.15 – 7.01 (m, 4H), 4.47 (s, 2H), 3.89 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.31 (d, *J* = 43.9 Hz), 160.85 (d, *J* = 45.4 Hz), 156.83, 131.56 (d, *J* = 3.3 Hz), 130.63 (d, *J* = 4.1 Hz), 128.99, 128.53, 121.76, 116.27 (dd, *J* = 40.8, 21.6 Hz), 80.93, 39.59. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₁₆H₁₂F₂N₂Na, 293.0867; found, 293.0861.

(*E*)-3-amino-2,4-di-*m*-tolylbut-2-enenitrile (**2i**): yield, 71% (37 mg); gummy liquid; $R_f = 0.35$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.23 (m, 3H), 7.21 (d, *J* = 7.7 Hz, 1H), 7.17 – 7.10 (m, 3H), 7.07 (d, *J* = 7.4 Hz, 1H), 4.58 (s, 2H), 3.89 (s, 2H), 2.36 (d, *J* = 5.5 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 156.76, 139.22, 138.94, 135.85, 133.38, 129.85, 129.38, 129.23, 129.04, 128.42, 128.19, 126.14, 125.60, 122.16, 81.87, 40.42, 21.50. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₁₈H₁₈N₂Na, 285.1368; found, 285.1362.

(E)-3-amino-2,4-bis(3-methoxyphenyl)but-2-enenitrile (2j): yield, 67% (39 mg); white solid;

 $R_f = 0.33$ in 25% acetone in petroleum ether; melting point, 124-125°C; ¹H NMR (400 MHz,

CDCl₃) δ 7.29 (td, J = 7.9, 5.9 Hz, 2H), 7.02 – 6.97 (m, 1H), 6.93 (dt, J = 14.1, 4.5 Hz, 2H), 6.88 (d, J = 2.1 Hz, 1H), 6.85 (dd, J = 8.2, 2.4 Hz, 1H), 6.80 (ddd, J = 8.3, 2.5, 0.7 Hz, 1H), 4.61 (s, 2H), 3.90 (s, 2H), 3.81 (d, J = 4.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 160.41, 160.25, 156.65, 137.32, 134.82, 130.44, 130.25, 121.87, 121.45, 120.88, 114.88, 114.14, 113.17, 113.06, 81.97, 55.45, 55.41, 40.55. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd For C₁₈H₁₈O₂N₂Na, 317.1266; found, 317.1261.

(*E*)-3-amino-2,4-bis(3-fluorophenyl)but-2-enenitrile (**2k**): yield, 62% (34 mg); colorless liquid; $R_f = 0.33$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (dtd, J = 9.9, 8.0, 6.1 Hz, 2H), 7.23 – 7.19 (m, 1H), 7.16 – 7.11 (m, 2H), 7.09 – 7.01 (m, 2H), 7.01 – 6.94 (m, 1H), 4.63 (s, 2H), 3.93 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 164.54 (d, J = 9.9 Hz), 162.08 (d, J = 9.7 Hz), 156.37, 138.01 (d, J = 7.3 Hz), 135.43 (d, J = 8.1 Hz), 131.12 (d, J = 8.6 Hz), 130.85 (d, J = 8.3 Hz), 124.79 (d, J = 2.9 Hz), 124.33 (d, J = 2.9 Hz), 121.23, 116.03 (d, J = 21.7 Hz), 115.61 (d, J = 22.0 Hz), 114.90 (d, J = 21.0 Hz), 114.64 (d, J = 21.0 Hz), 81.81, 40.33. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd For C₁₆H₁₂F₂N₂Na, 293.0867; found, 293.0861.

(*E*)-3-amino-2,4-di-o-tolylbut-2-enenitrile (**2l**): yield, 51% (27 mg); yellow oil; $R_f = 0.35$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl3) δ 7.28 – 7.18 (m, 8H), 4.12 (s, 2H), 4.00 (s, 2H), 2.42 (s, 3H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl3) δ 156.56,

138.31, 137.57, 133.84, 131.52, 131.10, 130.98, 130.85, 130.23, 128.66, 128.03, 126.82, 126.63, 121.12, 80.37, 37.60, 19.72, 19.54. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd For C₁₈H₁₈N₂Na, 285.1368; found, 285.1362.

(*E*)-3-amino-2,4-bis(2-fluorophenyl)but-2-enenitrile (**2m**): yield, 55% (30 mg); yellow oil; $R_f = 0.35$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (td, *J* = 7.6, 1.5 Hz, 1H), 7.38 (td, *J* = 7.5, 1.8 Hz, 1H), 7.34 – 7.27 (m, 2H), 7.18 (tdd, *J* = 7.5, 3.0, 1.1 Hz, 2H), 7.11 (td, *J* = 8.4, 0.9 Hz, 2H), 4.49 (d, *J* = 45.3 Hz, 2H), 3.99 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.73 (d, *J* = 114.8 Hz), 159.28 (d, *J* = 119.1 Hz), 157.60, 131.75 (d, *J* = 3.2 Hz), 131.39 (d, *J* = 3.8 Hz), 130.14 (d, *J* = 8.2 Hz), 129.61 (d, *J* = 8.2 Hz), 125.05, 123.23 (d, *J* = 15.6 Hz), 121.21, 120.22 (d, *J* = 15.7 Hz), 116.64 (d, *J* = 21.8 Hz), 115.69 (d, *J* = 22.0 Hz), 75.48, 33.35 (d, *J* = 2.7 Hz).HRMS (ESI-TOF) *m*/*z* [M+Na]⁺ calcd For C₁₆H₁₂F₂N₂Na, 293.0867; found, 293.0861.

(*E*)-3-amino-2,4-bis(3,5-dimethylphenyl)but-2-enenitrile (**2n**): yield, 47% (27 mg); gummy liquid; $R_f = 0.38$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.04 (s, 2H), 6.94 (s, 3H), 6.89 (s, 1H), 4.54 (s, 2H), 3.85 (s, 2H), 2.32 (d, J = 5.7 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 156.67, 139.06, 138.86, 135.82, 133.37, 129.34, 129.11, 126.99, 126.37, 122.24, 82.04, 40.37, 21.42 (d, J = 1.6 Hz). HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₂₀H₂₂N₂Na, 313.1681; found, 313.1675.

(*E*)-3-amino-2,4-bis(2,5-dimethylphenyl)but-2-enenitrile (**2o**): yield, 34% (20 mg); colorless oil; $R_f = 0.38$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, *J* = 7.5 Hz, 1H), 7.11 (d, *J* = 7.4 Hz, 1H), 7.08 – 7.02 (m, 4H), 4.10 (s, 2H), 3.96 (s, 2H), 2.37 (s, 3H), 2.33 (s, 3H), 2.30 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 156.37, 136.28, 136.06, 134.92, 134.30, 133.58, 131.29, 131.25, 131.04, 130.88, 130.82, 129.30, 128.58, 121.17, 80.38, 37.50, 20.93, 20.84, 19.12, 18.97. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₂₀H₂₂N₂Na, 313.1681; found, 313.1675.

(E)-3-amino-2,4-di(naphthalen-2-yl)but-2-enenitrile (**2p**): yield, 72% (48 mg); white solid; R_f

= 0.35 in 25% acetone in petroleum ether; melting point, 116-117°C; ¹H NMR (400 MHz,

CDCl₃) δ 7.91 – 7.77 (m, 8H), 7.58 – 7.54 (m, 1H), 7.53 – 7.46 (m, 5H), 4.71 (s, 2H), 4.14 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.90, 133.72, 133.60, 133.39, 132.80, 132.44, 130.86, 129.28, 129.14, 128.08, 127.87, 127.83, 127.82, 127.74, 127.57, 126.85, 126.72, 126.66, 126.46, 126.44, 126.28, 122.09, 82.15, 40.78. HRMS (ESI-TOF) *m*/*z* [M+Na]⁺ calcd For C₂₄H₁₈N₂Na, 357.1368; found, 357.1362.

(E)-3-amino-2,4-di(naphthalen-1-yl)but-2-enenitrile (2q): yield, 70% (47 mg); white solid; R_f

= 0.35 in 25% acetone in petroleum ether; melting point, 80-81°C; ¹H NMR (400 MHz,

CDCl₃) δ 8.32 (d, J = 8.5 Hz, 1H), 8.06 – 8.00 (m, 1H), 7.92 (d, J = 8.1 Hz, 1H), 7.89 – 7.82 (m, 3H), 7.74 – 7.66 (m, 1H), 7.63 – 7.54 (m, 2H), 7.54 – 7.45 (m, 5H), 4.58 (d, J = 13.5 Hz, 2H), 4.12 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.07, 134.24, 134.06, 132.13, 131.62, 131.38, 129.65, 129.11, 129.04, 128.97, 128.82, 128.74, 128.31, 127.05, 126.87, 126.48,

126.39, 125.96, 125.57, 124.98, 123.57, 121.86, 78.25, 37.54. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd For C₂₄H₁₈N₂Na, 357.1368; found, 357.1362.

(*E*)-3-amino-2-benzyl-5-phenylpent-2-enenitrile (**2r**): yield, 78% (41 mg); colorless oil; $R_f = 0.33$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.26 (m, 4H), 7.23 (dt, *J* = 12.3, 5.5 Hz, 4H), 7.19 – 7.15 (m, 2H), 3.99 (s, 2H), 3.40 (s, 2H), 2.94 (t, *J* = 7.6 Hz, 2H), 2.76 (t, *J* = 7.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.37, 139.95, 137.83, 128.89, 128.75, 128.63, 128.00, 126.89, 126.65, 122.92, 77.75, 36.52, 34.59, 33.49. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₁₈H₁₈N₂Na, 285.1368; found, 285.1362.

(*E*)-3-amino-2-phenethyl-6-phenylhex-2-enenitrile (**2s**): yield, 77% (45 mg); yellow oil; $R_f = 0.38$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.28 (m, 5H), 7.26 – 7.18 (m, 5H), 3.91 (s, 2H), 2.86 (t, *J* = 7.6 Hz, 2H), 2.71 – 2.64 (m, 2H), 2.47 – 2.40 (m, 2H), 2.31 (dd, *J* = 13.7, 6.2 Hz, 2H), 1.89 (tt, *J* = 9.2, 7.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.99, 141.48, 141.20, 128.64, 128.58, 128.54, 128.47, 126.36, 126.14, 122.49, 78.52, 35.22, 34.41, 34.28, 29.97, 29.39. HRMS m/z (ESI) [M+Na⁺]:313.1675. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₂₀H₂₂N₂Na, 313.1681; found, 313.1675.

(*E*)-3-amino-2-ethylhex-2-enenitrile (**2t**): yield, 78% (22 mg); yellow oil; $R_f = 0.35$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 4.10 (s, 2H), 2.38 (t, *J* = 7.6 Hz, 2H), 2.01 (q, *J* = 7.5 Hz, 2H), 1.60 (dt, *J* = 14.8, 7.4 Hz, 2H), 1.15 – 1.10 (m, 3H), 0.98 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.06, 122.48, 100.04, 36.49, 21.63, 19.99, 13.57, 12.47. HRMS (ESI-TOF) *m*/*z* [M+Na]⁺ calcd For C₈H₁₄N₂Na, 161.1055; found, 161.1049.

(*E*)-3-amino-2-isopropyl-5-methylhex-2-enenitrile (**2u**): yield, 65% (22 mg); gummy liquid; $R_f = 0.40$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 4.21 – 3.97 (m, 2H), 2.41 – 2.29 (m, 1H), 2.26 (d, *J* = 7.6 Hz, 2H), 1.91 (dp, *J* = 13.4, 6.7 Hz, 1H), 1.11 (dd, *J* = 6.8, 1.1 Hz, 6H), 0.97 (dd, *J* = 6.6, 1.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 155.00, 121.24, 87.78, 43.74, 28.01, 25.59, 22.16, 21.43. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₁₀H₁₈N₂Na, 189.1368; found, 189.1362.

(*E*)-3-amino-2-propylhept-2-enenitrile (**2v**): yield, 76% (25 mg); yellow oil; $R_f = 0.45$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 4.06 (s, 2H), 2.43 – 2.36 (t, *J* = 7.6 Hz, 2H), 1.99 – 1.91 (t, *J* = 7.4 Hz, 2H), 1.59 – 1.49 (m, 4H), 1.38 (dq, *J* = 14.4, 7.2 Hz, 2H), 0.97 – 0.89 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 157.75, 122.69, 79.22, 34.51, 30.49, 28.87, 22.30, 21.29, 13.98, 13.83. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₁₀H₁₈N₂Na, 189.1368; found, 189.1362.

2-aminocyclopent-1-enecarbonitrile (**2w**): yield, 62% (27 mg); white solid; $R_f = 0.35$ in 25% acetone in petroleum ether; melting point, 147-148°C; ¹H NMR (400 MHz, CDCl₃) δ 4.47 (s, 2H), 2.56 – 2.49 (m, 2H), 2.45 (t, J = 7.7 Hz, 2H), 1.97 – 1.87 (m, 2H). ¹³C NMR (101 MHz,

CDCl₃) δ 162.51, 119.17, 74.53, 34.38, 31.33, 22.08. HRMS (ESI-TOF) m/z [M+Na]+ calcd For C₆H₈N₂Na, 131.0585; found, 131.0580.

(*E*)-3-amino-2,4-di(pyridin-2-yl)but-2-enenitrile (**2x**): yield, 72% (34 mg); white solid; $R_f =$

0.33 in 25% acetone in petroleum ether; melting point, 124-125°C; ¹H NMR (400 MHz,

CDCl₃) δ 10.77 (s, 1H), 8.54 (dd, J = 4.9, 0.8 Hz, 1H), 8.34 (ddd, J = 5.0, 1.7, 0.9 Hz, 1H), 7.67 (td, J = 7.7, 1.8 Hz, 1H), 7.64 – 7.58 (m, 1H), 7.52 (d, J = 8.3 Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.21 (ddd, J = 7.5, 4.9, 0.9 Hz, 1H), 6.98 – 6.90 (m, 1H), 6.85 (s, 1H), 4.09 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.89, 156.52, 156.24, 149.34, 146.80, 137.51, 136.63, 124.18, 122.59, 122.00, 120.15, 118.63, 77.73, 42.92. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₁₄H₁₂N₄Na, 259.0960; found, 259.0954.

3-aminocrotononitrile (2y), (45 : 55, (E)/(Z) mixture) : yield, 92% (15 mg); white solid; $R_f =$

0.33 in 25% acetone in petroleum ether; melting point, 80-81°C; ¹H NMR (400 MHz, CDCl₃):

δ 4.47 (s, 2H), 4.09 (s, 1H), 2.07 (s, 3H) for (*E*) configuration; 4.74 (s, 2H), 3.78 (s, 1H), 1.90 (s, 3H) for (*Z*) configuration. ¹³C NMR (101 MHz, CDCl₃): δ 160.98, 119.65, 62.73, 21.23 for (*E*) configuration; 161.49, 121.39, 65.03, 19.59 for (*Z*) configuration. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₄H₆N₂Na, 105.0429; found, 105.0423.

(*E*)-2-(amino(phenyl)methylene)butanenitrile (**3a**): yield, 88% (30 mg); colourless oil; $R_f = 0.33$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 2.7 Hz, 3H), 7.38 – 7.30 (m, 2H), 4.50 (s, 2H), 2.02 (q, *J* = 7.2 Hz, 2H), 1.05 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.90, 135.55, 129.85, 128.83, 128.00, 120.92, 81.03, 21.86, 14.59. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₁₁H₁₂N₂Na, 195.0898; found, 195.0893.

(*E*)-3-amino-2-benzyl-3-phenylacrylonitrile (**3b**): yield, 89% (42 mg); colourless oil; $R_f = 0.35$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.55 (m, 2H), 7.45 – 7.38 (m, 3H), 7.38 – 7.32 (m, 4H), 7.30 – 7.24 (m, 1H), 4.46 (s, 2H), 3.58 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.54, 137.76, 136.10, 130.36, 128.95, 128.79, 128.07, 128.06, 126.98, 123.42, 78.22, 34.55. HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd For C₁₆H₁₅N₂, 235.1235; found, 235.1228.

(*E*)-3-amino-3-phenyl-2-(pyridin-2-yl)acrylonitrile (**3c**): yield, 90% (40 mg); white solid; $R_f =$

0.375 in 25% acetone in petroleum ether; melting point, 115-116°C ¹H NMR (400 MHz,

CDCl₃) δ 11.07 (s, 1H), 8.45 (dd, *J* = 5.0, 0.6 Hz, 1H), 7.73 – 7.57 (m, 4H), 7.55 – 7.38 (m, 3H), 7.02 (ddd, *J* = 7.0, 5.0, 1.1 Hz, 1H), 5.50 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.29, 156.57, 146.76, 136.99, 136.78, 130.57, 128.78, 127.97, 121.87, 120.47, 118.97, 78.53. HRMS (ESI-TOF) *m*/*z* [M+Na]⁺ calcd For C₁₄H₁₁N₃Na, 244.0851; found, 244.0845.

(*E*)-2-(amino(pyridin-2-yl)methylene)butanenitrile (**3d**): yield, 86% (30 mg); yellow oil; $R_f = 0.3$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 8.58 (ddd, *J* = 4.8, 1.7,

1.0 Hz, 1H), 8.22 (dt, J = 8.1, 0.9 Hz, 1H), 7.75 (tt, J = 5.4, 2.7 Hz, 1H), 7.32 (tdd, J = 7.6, 4.5, 1.6 Hz, 1H), 5.31 – 5.00 (m, 2H), 2.24 (q, J = 7.5 Hz, 2H), 1.23 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.89, 151.53, 148.93, 137.02, 124.60, 123.61, 122.67, 81.20, 21.91, 11.95. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd For C₁₀H₁₁N₃Na, 196.0851; found, 196.0845.

(*E*)-3-amino-2-benzyl-3-(pyridin-2-yl)acrylonitrile (**3e**): yield, 85% (40 mg); red oil; $R_f = 0.4$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, *J* = 4.3 Hz, 1H), 8.33 (d, *J* = 8.1 Hz, 1H), 7.79 (td, *J* = 7.9, 1.8 Hz, 1H), 7.38 – 7.29 (m, 5H), 7.29 – 7.22 (m, 1H), 5.22 (s, 2H), 3.67 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 154.38, 151.08, 149.00, 137.27, 137.15, 128.98, 128.11, 127.08, 124.89, 123.78, 123.61, 77.80, 35.53. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₁₅H₁₃N₃Na, 258.1007; found, 258.1001.

(*E*)-3-amino-2,3-di(pyridin-2-yl)acrylonitrile (**3f**): yield, 83% (37 mg); white solid; $R_f = 0.325$

in 25% acetone in petroleum ether; melting point, 122-123 °C; ¹H NMR (400 MHz, CDCl₃) δ

11.21 (s, 1H), 8.65 (d, J = 4.7 Hz, 1H), 8.46 (d, J = 5.0 Hz, 1H), 8.25 (d, J = 8.0 Hz, 1H), 7.81 (td, J = 7.8, 1.7 Hz, 1H), 7.73 – 7.63 (m, 2H), 7.41 – 7.32 (m, 1H), 7.07 – 6.98 (m, 1H), 6.80 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.43, 156.60, 152.20, 149.48, 146.81, 136.99, 136.72, 125.21, 124.29, 122.29, 120.79, 119.19, 77.21. HRMS (ESI-TOF) *m*/*z* [M+Na]⁺ calcd For C₁₃H₁₀N₄Na, 245.0803; found, 245.0798.

(*E*)-2-(amino(thiophen-2-yl)methylene)butanenitrile (**3g**): yield, 62% (22 mg); colorless oil; $R_f = 0.275$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl3) δ 7.57 (dd, J = 3.7, 1.1 Hz, 1H), 7.37 (dd, J = 5.1, 1.1 Hz, 1H), 7.06 (dd, J = 5.1, 3.7 Hz, 1H), 4.35 (s, 2H), 2.20 (q, J = 7.5 Hz, 2H), 1.21 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.06, 137.13, 129.02, 127.68, 127.23, 122.35, 82.17, 21.48, 12.29. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd For C₉H₁₁N₂S, 179.0643; found, 179.0637.

(*E*)-3-amino-2-benzyl-3-(thiophen-2-yl)acrylonitrile (**3h**): yield, 60% (29 mg); red oil; $R_f = 0.4$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 3.7 Hz, 1H), 7.41 (d, J = 5.1 Hz, 1H), 7.38 – 7.29 (m, 4H), 7.29 – 7.22 (m, 1H), 7.11 – 7.07 (m, 1H), 4.36 (s, 2H), 3.61 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 149.67, 137.44, 136.76, 129.51, 129.07, 128.10, 127.88, 127.65, 127.14, 123.20, 78.72, 35.03. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₁₄H₁₂N₂SNa, 263.0619; found, 263.0613.

(*E*)-3-amino-2-(pyridin-2-yl)-3-(thiophen-2-yl)acrylonitri-le (**3i**): yield, 73% (35 mg); yellow oil; $R_f = 0.6$ in 50% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 11.16 (s, 1H), 8.43 (d, *J* = 4.9 Hz, 1H), 7.75 – 7.60 (m, 3H), 7.49 – 7.42 (m, 1H), 7.11 (dd, *J* = 5.0, 3.8 Hz, 1H), 7.02 (ddd, *J* = 6.6, 5.1, 1.4 Hz, 1H), 5.48 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 156.17, 155.15, 146.70, 137.37, 136.83, 130.13, 128.30, 127.86, 121.88, 120.86, 119.20, 78.52. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₁₂H₉N₃SNa, 250.0415; found,250.0409.

(E)-2-(amino(naphthalen-2-yl)methylene)butanenitrile (3j): yield, 61% (27 mg); white solid;

 $R_f = 0.325$ in 25% acetone in petroleum ether; melting point, 118-119°C; ¹H NMR (400 MHz,

CDCl₃) δ 8.03 (d, J = 1.2 Hz, 1H), 7.91 – 7.82 (m, 3H), 7.61 (dt, J = 5.3, 2.7 Hz, 1H), 7.57 – 7.49 (m, 2H), 4.47 (s, 2H), 2.18 (q, J = 7.5 Hz, 2H), 1.24 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.89, 133.86, 133.74, 132.82, 128.43, 128.39, 127.80, 127.72, 127.09, 126.63, 125.16, 122.81, 81.60, 21.02, 12.29. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd For C₁₅H₁₄N₂Na, 245.1055; found, 245.1049.

(E)-3-amino-2-benzyl-3-(naphthalen-2-yl)acrylonitrile (3k): yield, 65% (37 mg); white solid;

 $R_f = 0.3$ in 25% acetone in petroleum ether; melting point, 127-128°C; ¹H NMR (400 MHz,

CDCl₃) δ 7.92 – 7.81 (m, 4H), 7.60 – 7.52 (m, 2H), 7.45 (dd, J = 8.5, 1.6 Hz, 1H), 7.33 – 7.26 (m, 2H), 7.25 – 7.14 (m, 3H), 4.77 (s, 2H), 3.40 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.47, 137.80, 134.04, 133.36, 132.85, 128.95, 128.59, 128.53, 128.11, 127.97, 127.80, 127.29, 126.97, 126.78, 125.10, 123.52, 78.56, 34.58. HRMS (ESI-TOF) *m*/*z* [M+Na]⁺ calcd For C₂₀H₁₆N₂Na, 307.1211; found, 307.1206.

(*Z*)-3-amino-2-benzyl-3-(naphthalen-2-yl)acrylonitrile (**3k'**): yield, 16% (9 mg); colourless oil; $R_f = 0.35$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 1.0 Hz, 1H), 7.91 – 7.82 (m, 3H), 7.65 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.41 – 7.33 (m, 4H), 7.29 (ddd, *J* = 8.1, 6.5, 3.7 Hz, 1H), 4.47 (s, 2H), 3.62 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.29, 139.85, 133.86, 132.92, 132.44, 128.85, 128.69, 128.46, 128.20, 127.96, 127.88, 127.47, 127.08, 126.60, 125.19, 121.07, 78.48, 34.47.

(E)-3-amino-3-(naphthalen-2-yl)-2-(pyridin-2-yl)acryloni-trile (31): yield, 71% (39 mg); white

solid; $R_f = 0.4$ in 25% acetone in petroleum ether; melting point, 200-201°C; ¹H NMR (400

MHz, CDCl₃) δ 11.18 (s, 1H), 8.48 (s, 1H), 8.15 (s, 1H), 8.03 – 7.84 (m, 3H), 7.70 (dd, J = 19.7, 9.0 Hz, 3H), 7.62 – 7.49 (m, 2H), 7.06 (s, 1H), 5.49 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.25, 156.72, 146.87, 136.95, 134.47, 134.26, 132.93, 128.83, 128.75, 128.11, 127.95, 127.57, 126.97, 125.02, 121.88, 120.71, 119.16, 79.30. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd For C₁₈H₁₃N₃Na, 294.1007; found, 294.1002.

3,3-bis(isopropylamino)-2-phenylacrylonitrile (4a): yield, 97% (47 mg); white solid; $R_f =$

0.33 in 25% acetone in petroleum ether; melting point, 100-101°C; ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.25 (m, 4H), 7.08 (tt, *J* = 7.0, 1.8 Hz, 1H), 4.10 (d, *J* = 9.4 Hz, 2H), 3.74 – 3.57 (m, 2H), 1.19 (d, *J* = 6.5 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 159.66, 135.39, 128.79, 127.82, 124.84, 124.57, 64.53, 46.72, 23.30. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₁₅H₂₁N₃Na, 266.1633; found, 266.1628.

3,3-bis(isopropylamino)-2-(4-methoxyphenyl)acrylonitrile (**4b**): yield, 96% (52 mg); white solid; $R_f = 0.28$ in 25% acetone in petroleum ether; melting point, 129-130°C; ¹H NMR (400

MHz, CDCl₃) δ 7.23 – 7.16 (m, 2H), 6.87 – 6.81 (m, 2H), 3.83 (d, *J* = 20.8 Hz, 2H), 3.77 (s, 3H), 3.59 (d, *J* = 5.6 Hz, 2H), 1.12 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 159.67, 157.65, 130.07, 126.92, 124.46, 114.43, 65.08, 55.34, 46.85, 23.42. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₁₆H₂₃N₃NaO, 296.1739; found, 296.1733.

2-(4-(tert-butyl)phenyl)-3,3-bis(isopropylamino)acryloni-trile (4c): yield, 96% (57 mg); white

solid; $R_f = 0.33$ in 25% acetone in petroleum ether; melting point, 99-100°C; ¹H NMR (400

MHz, CDCl₃) δ 7.32 (d, *J* = 8.5 Hz, 2H), 7.25 (d, *J* = 8.5 Hz, 2H), 4.01 (d, *J* = 9.5 Hz, 2H), 3.64 (qd, *J* = 12.7, 6.3 Hz, 2H), 1.31 (s, 9H), 1.21 (d, *J* = 6.3 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 159.66, 148.09, 132.04, 127.72, 125.87, 124.47, 65.53, 46.98, 34.45, 31.38, 23.43. HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd For C₁₉H₃₀N₃, 300.2440; found, 300.2434.

3,3-bis(isopropylamino)-2-(p-tolyl)acrylonitrile (4d): yield, 97% (50 mg); white solid; $R_f =$

0.30 in 25% acetone in petroleum ether; melting point, 121-122°C; ¹H NMR (400 MHz,

CDCl₃) δ 7.22 – 7.16 (m, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 3.93 (d, *J* = 9.6 Hz, 2H), 3.68 – 3.53 (m, 2H), 2.31 (s, 3H), 1.19 (d, *J* = 5.2 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 159.70, 135.07, 131.95, 129.70, 128.35, 124.45, 65.68, 47.03, 23.48, 21.13. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd For C₁₆H₂₄N₃, 258.1970; found, 258.1965.

2-([1,1'-biphenyl]-4-yl)-3,3-bis(isopropylamino)acrylonitr-ile (4e): yield, 96% (63 mg); white

solid; $R_f = 0.40$ in 25% acetone in petroleum ether; melting point, 173-174°C; ¹H NMR (400

MHz, CDCl₃) δ 7.60 (dd, J = 8.3, 1.1 Hz, 2H), 7.57 – 7.52 (m, 2H), 7.41 (tt, J = 8.6, 1.9 Hz, 4H), 7.36 – 7.28 (m, 1H), 4.09 (d, J = 9.4 Hz, 2H), 3.76 – 3.60 (m, 2H), 1.23 (d, J = 6.4 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 159.69, 140.71, 137.58, 134.57, 128.87, 128.11, 127.52, 127.17, 126.83, 124.40, 64.88, 46.95, 23.50. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd For C₂₁H₂₅N₃Na, 342.1946; found, 342.1941.

2-(4-bromophenyl)-3,3-bis(isopropylamino)acrylonitrile (**4f**): yield, 95% (61 mg); white solid; $R_f = 0.30$ in 25% acetone in petroleum ether; melting point, 137-138°C; ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.35 (m, 2H), 7.20 – 7.13 (m, 2H), 4.00 (d, *J* = 9.1 Hz, 2H), 3.62 (qd, *J* = 12.7, 6.3 Hz, 2H), 1.19 (d, *J* = 6.4 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 159.58, 134.65, 131.94, 129.39, 124.07, 118.13, 63.90, 46.88, 23.51. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₁₅H₂₀BrN₃Na, 344.0738; found, 344.0733.

2-(4-chlorophenyl)-3,3-bis(isopropylamino)acrylonitrile (**4g**): yield, 95% (53 mg); white solid; $R_f = 0.38$ in 25% acetone in petroleum ether; melting point, 128-129°C; ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.18 (m, 4H), 4.03 (d, *J* = 9.3 Hz, 2H), 3.75 – 3.50 (m, 2H), 1.18 (d, *J* = 6.4 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 159.61, 134.16, 130.17, 129.01, 128.95, 124.21, 63.57, 46.81, 23.45. HRMS (ESI-TOF) *m*/*z* [M+Na]⁺ calcd For C₁₅H₂₀ClN₃Na, 300.1243; found, 300.1238.

2-(4-fluorophenyl)-3,3-bis(isopropylamino)acrylonitrile (4h): yield, 95% (50 mg); white

solid; $R_f = 0.30$ in 25% acetone in petroleum ether; melting point, 101-102°C; ¹H NMR (400

MHz, CDCl₃) δ 7.33 – 7.22 (m, 2H), 7.12 – 6.89 (m, 2H), 3.91 (s, 2H), 3.62 (s, 2H), 1.25 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 161.88, 159.58 (d, *J* = 26.4 Hz), 131.07 (d, *J* = 3.2 Hz), 130.01 (d, *J* = 7.8 Hz), 124.32, 115.82 (d, *J* = 21.4 Hz), 64.03, 46.85, 23.44. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd For C₁₅H₂₁FN₃, 262.1720; found, 262.1714.

3,3-bis(isopropylamino)-2-(3-methoxyphenyl)acrylonitrile (**4i**): yield, 97% (53 mg); colorless oil; $R_f = 0.33$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.20 (t, J = 8.0 Hz, 1H), 6.90 (dd, J = 7.7, 0.9 Hz, 1H), 6.88 – 6.85 (m, 1H), 6.68 – 6.63 (m, 1H), 4.02 (d, J = 9.5 Hz, 2H), 3.79 (s, 3H), 3.64 (qt, J = 12.8, 6.3 Hz, 2H), 1.21 (d, J = 6.4 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 160.19, 159.85, 136.70, 129.91, 124.31, 120.44, 113.33, 111.12, 65.75, 55.35, 47.08, 23.53. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd For C₁₆H₂₃N₃NaO, 296.1739; found, 296.1733.

3,3-bis(isopropylamino)-2-(*m*-tolyl)acrylonitrile (**4j**): yield, 99% (50 mg); pale yellow oil; $R_f = 0.43$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.17 (dd, J = 13.3, 5.6 Hz, 2H), 7.10 (d, J = 7.8 Hz, 1H), 6.91 (d, J = 7.4 Hz, 1H), 4.01 (d, J = 9.5 Hz, 2H), 3.71 – 3.55 (m, 2H), 2.31 (s, 3H), 1.20 (d, J = 6.4 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 159.80, 138.66, 135.07, 128.96, 128.82, 126.03, 125.07, 124.47, 65.73, 47.03, 23.49, 21.52. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd For C₁₆H₂₃N₃Na, 280.1790; found, 280.1784.

2-(3-fluorophenyl)-3,3-bis(isopropylamino)acrylonitrile (**4k**): yield, 92% (48 mg); yellow oil; R_f = 0.33 in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.19 (m, 1H), 7.08 (d, *J* = 7.9 Hz, 1H), 7.04 – 6.98 (m, 1H), 6.75 (ddd, *J* = 8.3, 2.5, 1.2 Hz, 1H), 4.07 (d, *J* = 9.2 Hz, 2H), 3.71 – 3.58 (m, 2H), 1.21 (d, *J* = 6.4 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 163.29 (d, *J* = 245.4 Hz), 159.76, 138.08 (d, *J* = 8.5 Hz), 130.30 (d, *J* = 8.9 Hz), 124.07, 123.12 (d, *J* = 2.6 Hz), 114.13 (d, *J* = 22.3 Hz), 111.52 (d, *J* = 21.2 Hz), 64.22, 46.95, 23.52.HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd For C₁₅H₂₁FN₃, 262.1720; found, 262.1714.

3,3-bis(isopropylamino)-2-(2-methoxyphenyl)acrylonitrile (**4l**): yield, 95% (52 mg); colorless oil; $R_f = 0.25$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.22 (ddd, J = 9.8, 5.8, 1.8 Hz, 2H), 6.91 (ddd, J = 11.5, 8.9, 4.6 Hz, 2H), 3.84 (d, J = 9.9 Hz, 5H), 3.66 – 3.44 (m, 2H), 1.23(s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 160.52, 157.44, 132.40, 128.40, 124.14, 122.83, 121.10, 111.73, 61.64, 55.75, 47.02, 23.52. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd For C₁₆H₂₄N₃O, 274.1919; found, 274.1914.

3,3-bis(isopropylamino)-2-(*o*-tolyl)acrylonitrile (**4m**): yield, 96% (49 mg); yellow oil; $R_f = 0.45$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.21 (dt, J = 6.4, 3.1 Hz, 1H), 7.19 – 7.12 (m, 3H), 3.95 (d, J = 9.0 Hz, 1H), 3.64 (s, 1H), 3.44 (s, 2H), 2.33 (s, 3H), 1.21 (dd, J = 40.2, 5.7 Hz, 6H), 1.00 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 160.35, 138.94, 132.50, 131.82, 130.74, 127.65, 126.37, 123.34, 64.80, 47.82, 46.31, 23.43 (s), 20.06. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd For C₁₆H₂₃N₃Na, 280.1790; found, 280.1784.

2-(2-fluorophenyl)-3,3-bis(isopropylamino)acrylonitrile (**4n**): yield, 92% (48 mg); colorless oil; $R_f = 0.40$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.31 (td, J = 7.7, 1.9 Hz, 1H), 7.16 (tdd, J = 7.1, 5.0, 1.9 Hz, 1H), 7.09 (td, J = 7.5, 1.4 Hz, 1H), 7.06 – 6.99 (m, 1H), 3.92 (d, J = 7.7 Hz, 2H), 3.62 (d, J = 6.1 Hz, 2H), 1.17 (d, J = 6.4 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 160.99, 160.36, 158.53, 131.90 (d, J = 3.1 Hz), 127.91 (d, J = 8.1 Hz), 124.62 (d, J = 3.6 Hz), 123.87, 122.52 (d, J = 14.7 Hz), 116.18, 115.96, 57.51, 46.85, 23.45. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₁₅H₂₀FN₃Na, 284.1539; found, 284.1533.

3,3-bis(isopropylamino)-2-(pyridin-2-yl)acrylonitrile (**4o**): yield, 97% (47 mg); colorless oil; $R_f = 0.53$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 10.91 (s, 1H), 8.21 (ddd, J = 5.0, 1.8, 0.9 Hz, 1H), 7.51 (ddd, J = 8.4, 7.3, 1.9 Hz, 1H), 7.33 (dt, J = 8.4, 0.9 Hz, 1H), 6.78 (ddd, J = 7.3, 5.1, 1.0 Hz, 1H), 4.09 (s, 1H), 3.77 (d, J = 5.9 Hz, 2H), 1.27 (d, J = 6.4 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 162.90, 157.24, 145.84, 136.35, 123.86, 119.19, 116.52, 65.24, 48.23, 46.50, 23.67. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₁₄H₂₀N₄Na, 267.1586; found, 267.1580.

2-(3,5-dimethylphenyl)-3,3-bis(isopropylamino)acrylonit-rile (4p): yield, 93% (50 mg); white

solid; $R_f = 0.40$ in 25% acetone in petroleum ether; melting point, 121-122°C; ¹H NMR (400 MHz, CDCl₃) δ 6.95 (s, 2H), 6.75 (s, 1H), 3.96 (d, J = 9.6 Hz, 2H), 3.63 (qd, J = 12.7, 6.3 Hz, 2H), 2.27 (s, 6H), 1.20 (d, J = 6.1 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 159.85, 138.51, 134.91, 127.02, 125.94, 124.49, 65.98, 47.11, 23.52, 21.42. HRMS (ESI-TOF) m/z [M+H]⁺

calcd For C₁₇H₂₆N₃, 272.2127; found, 272.2121.

2-(2,5-dimethylphenyl)-3,3-bis(isopropylamino)acrylonit-rile (**4q**): yield, 88% (48 mg); pale yellow oil; $R_f = 0.48$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.09 (d, J = 7.6 Hz, 1H), 7.01 – 6.93 (m, 2H), 3.93 (d, J = 7.9 Hz, 1H), 3.64 (s, 1H), 3.46 (s, 2H), 2.27 (s, 6H), 1.25 (s, 6H), 0.97 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 160.37, 135.83, 135.73, 132.48, 132.24, 130.65, 128.45, 123.39, 65.21, 47.91, 46.37, 23.50 (d, J = 5.2 Hz), 20.93, 19.58. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd For C₁₇H₂₅N₃Na, 294.1946; found, 294.1941.

2-(benzo[d][1,3]dioxol-5-yl)-3,3-bis(isopropylamino)acryl-onitrile (4r): yield, 93% (53 mg);

white solid; $R_f = 0.30$ in 25% acetone in petroleum ether; melting point, 110-111°C; ¹H NMR (400 MHz, CDCl₃) δ 6.80 – 6.76 (m, 1H), 6.75 (d, J = 1.3 Hz, 2H), 5.93 (s, 2H), 4.03 – 3.72 (m, 2H), 3.59 (s, 2H), 1.16 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 159.79, 148.14, 145.71, 128.51, 124.30, 122.31, 109.52, 108.83, 101.14, 65.50, 47.40, 23.50 HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd For C₁₆H₂₂N₃O₂, 288.1712; found, 288.1707.

2-(3,4-dimethoxyphenyl)-3,3-bis(isopropylamino)acrylon-itrile (4s): yield, 84% (51 mg); white solid; $R_f = 0.40$ in 25% acetone in petroleum ether; melting point, 104-105°C; ¹H NMR (400 MHz, CDCl₃) δ 6.87 – 6.78 (m, 3H), 3.87 (d, J = 3.0 Hz, 8H), 3.58 (d, J = 15.2 – 10 –

Hz, 2H), 1.16 (s, 12H). ^{13}C NMR (101 MHz,) δ 159.79 , 149.24 , 147.14 , 127.30 , 124.44 , 121.11 , 112.12 , 111.67 , 65.64 , 56.02 , 55.95 , 42.25 , 23.53 . HRMS (ESI-TOF) m/z [M+H]+ calcd For $C_{17}H_{26}N_3O_2$, 304.2025; found, 304.2020.

2-(2,4-difluorophenyl)-3,3-bis(isopropylamino)acrylonitr-ile (**4t**): yield, 85% (47 mg); pale red oil; $R_f = 0.40$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.27 (td, J = 8.6, 6.6 Hz, 1H), 6.91 – 6.73 (m, 2H), 3.82 (s, 2H), 3.61 (s, 2H), 1.17 (d, J = 6.2 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 161.96 (dd, J = 174.6, 11.8 Hz), 160.38, 158.61 (d, J = 11.9 Hz), 132.73 (dd, J = 9.3, 4.4 Hz), 123.73, 118.60 (dd, J = 15.2, 3.8 Hz), 111.82 (dd, J = 21.1, 3.7 Hz), 104.36 (t, J = 25.9 Hz), 55.92, 46.74, 23.37. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₁₅H₁₉F₂N₃Na, 302.1445; found, 302.1439.

3,3-bis(isopropylamino)-2-(naphthalen-1-yl)acrylonitrile (**4u**): yield, 90% (53 mg); pale yellow oil; $R_f = 0.43$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 7.7 Hz, 1H), 7.88 – 7.83 (m, 1H), 7.79 (p, J = 3.1 Hz, 1H), 7.51 (tt, J = 12.8, 3.5 Hz, 2H), 7.47 – 7.43 (m, 2H), 4.14 (s, 1H), 3.73 (s, 1H), 3.46 (s, 2H), 1.31 (s, 6H), 0.89 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 161.00, 134.22, 132.67, 130.98, 129.65, 128.48, 128.07, 126.34, 126.12, 125.80, 125.51, 124.12, 62.21, 47.74, 46.43, 23.39. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₁₉H₂₃N₃Na, 316.1790; found, 316.1784.

3,3-bis(isopropylamino)-2-(naphthalen-2-yl)acrylonitrile (**4v**): yield, 92% (54 mg); pale yellow solid; $R_f = 0.33$ in 25% acetone in petroleum ether; melting point, 163-164°C; ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.69 (m, 4H), 7.51 – 7.35 (m, 3H), 4.19 (d, J = 9.4 Hz, 2H), 3.76 – 3.60 (m, 2H), 1.22 (d, J = 6.5 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 159.83, 134.05, 132.91, 131.38, 128.46, 127.69, 127.42, 126.81, 126.40, 125.89, 125.34, 124.51, 65.42, 47.03, 23.59. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd For C₁₉H₂₃N₃Na, 316.1790; found, 316.1784.

2,6-dimethylpyrimidin-4-amine (**5a**): yield, 77% (19 mg); white solid; $R_f = 0.40$ in 10% methanol in dichloromethane; melting point, 184-485 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.09 (s, 1H), 5.03 (s, 2H), 2.45 (s, 3H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.42, 165.86, 163.28, 100.83, 25.78, 23.95. HRMS (ESI-TOF) m/z [M+H]⁺ calcd For C₆H₁₀N₃, 124.0875; found, 124.0870.

2-phenyl-6,7-dihydro-5*H*-cyclopenta[*d*]pyrimidin-4-amin-e (**5b**) : yield, 63% (27 mg); white solid; $R_f = 0.45$ in 25% acetone in petroleum ether; melting point, 131-132°C; ¹H NMR (400 MHz, CDCl₃) δ 8.33 – 8.28 (m, 2H), 7.46 – 7.40 (m, 3H), 4.76 (s, 2H), 2.99 (t, *J* = 7.7Hz, 2H), 2.75 (t, *J* = 7.7 Hz, 2H), 2.23 – 2.10 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.46, 163.95, 159.51, 138.62, 129.92, 128.44, 128.09, 114.07, 34.44, 26.91, 21.77. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd For C₁₃H₁₄N₃, 212.1188; found, 212.1182.

5-ethyl-2,6-diphenylpyrimidin-4-amine (5c): yield, 75% (41 mg); white solid; $R_f = 0.40$ in

25% acetone in petroleum ether; melting point, 144-145°C; ¹H NMR (400 MHz, CDCl₃) δ

8.49 – 8.42 (m, 2H), 7.63 – 7.56 (m, 2H), 7.53 – 7.41 (m, 6H), 5.30 (s, 2H), 2.50 (p, J = 7.4 Hz, 2H), 1.17 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.09, 162.57, 161.33, 139.58, 138.33, 129.88, 128.60, 128.44, 128.25, 128.18, 128.04, 114.12, 19.95, 12.66. HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd For C₁₈H₁₈N₃, 276.1500; found, 276.1495.

5-ethyl-2,6-di(naphthalen-2-yl)pyrimidin-4-amine (5d): yield, 72% (54 mg); $R_f = 0.45$ in 25%

acetone in petroleum ether; melting point, 203-204°C; ¹H NMR (400 MHz, CDCl₃) δ 8.97 (s,

1H), 8.56 (dd, J = 8.6, 1.7 Hz, 1H), 8.08 (s, 1H), 8.01 – 7.84 (m, 6H), 7.74 (dd, J = 8.4, 1.7 Hz, 1H), 7.58 – 7.53 (m, 2H), 7.53 – 7.46 (m, 2H), 5.14 (s, 2H), 2.61 (q, J = 7.6 Hz, 2H), 1.23 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.47, 162.62, 161.50, 137.14, 135.77, 134.52, 133.43, 133.36, 133.14, 129.22, 128.56, 128.07, 128.05, 128.03, 127.93, 127.87, 127.76, 126.71, 126.63, 126.46, 126.05, 125.54, 114.58, 20.26, 12.88. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd For C₂₆H₂₂N₃, 376.1814; found, 376.1808.

5-ethyl-6-phenyl-2-(thiophen-2-yl)pyrimidin-4-amine (5e) : yield, 67% (38 mg); yellow solid;

 $R_f = 0.475$ in 25% acetone in petroleum ether; melting point, 155-156°C; ¹H NMR (400 MHz,

CDCl₃) δ 7.93 (d, J = 3.3 Hz, 1H), 7.53 (t, J = 8.3 Hz, 2H), 7.50 – 7.42 (m, 3H), 7.38 (d, J = 4.9 Hz, 1H), 7.09 (t, J = 4.0 Hz, 1H), 5.14 (s, 2H), 2.50 (p, J = 7.6 Hz, 2H), 1.16 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.19, 162.34, 158.15, 144.14, 139.30, 128.70, 128.60, 128.54, 128.25, 128.03, 127.94, 113.95, 20.10, 12.81. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd For C₁₆H₁₅N₃SNa, 304.0884; found, 304.0879.

5-ethyl-2,6-di(thiophen-2-yl)pyrimidin-4-amine (**5f**): yield, 85% (49 mg); yellow oil; $R_f = 0.40$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (dd, J = 3.6, 1.1 Hz, 1H), 7.52 (d, J = 3.7 Hz, 1H), 7.49 (d, J = 5.1 Hz, 1H), 7.40 (dd, J = 5.0, 1.2 Hz, 1H), 7.14 (dd, J = 5.1, 3.8 Hz, 1H), 7.11 (dd, J = 5.0, 3.7 Hz, 1H), 5.12 (s, 2H), 2.78 (q, J = 7.6 Hz, 2H), 1.31 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.88, 157.96, 155.69, 143.88, 143.09, 128.88, 128.77, 128.11, 128.08, 127.98, 127.75, 112.18, 20.05, 12.23. HRMS (ESI-TOF) m/z [M+H]⁺ calcd For C₁₄H₁₄N₃S₂, 288.0629; found, 288.0624.

5-benzyl-6-(pyridin-2-yl)-2-(thiophen-2-yl)pyrimidin-4-amine (**5g**) : yield, 71% (49 mg); yellow solid; $R_f = 0.35$ in 25% acetone in petroleum ether; melting point, 180-181°C; ¹H NMR (400 MHz, CDCl₃) δ 8.62 (ddd, J = 4.8, 1.7, 0.9 Hz, 1H), 8.03 (dt, J = 7.9, 0.9 Hz, 1H), 7.95 (dd, J = 3.7, 1.2 Hz, 1H), 7.83 (td, J = 7.7, 1.8 Hz, 1H), 7.40 (dd, J = 5.0, 1.2 Hz, 1H), 7.33 – 7.18 (m, 6H), 7.13 – 7.07 (m, 1H), 4.94 (s, 2H), 4.30 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.74, 161.58, 158.83, 157.55, 148.51, 144.02, 138.56, 136.85, 128.98, 128.84, 128.33, 128.22, 128.02, 126.80, 124.72, 123.62, 111.87, 32.42. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd For C₂₀H₁₆N₄SNa, 367.0993; found, 367.0988. 5-ethyl-2-phenyl-6-(pyridin-2-yl)pyrimidin-4-amine (**5h**) : yield, 63% (35 mg); colourless oil; $R_f = 0.35$ in 25% acetone in petroleum ether; ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, J = 4.3 Hz, 1H), 8.38 (ddd, J = 8.0, 5.4, 3.0 Hz, 2H), 7.95 (d, J = 7.9 Hz, 1H), 7.84 (td, J = 7.7, 1.8 Hz, 1H), 7.48 – 7.40 (m, 3H), 7.34 (ddd, J = 7.5, 4.9, 1.1 Hz, 1H), 5.13 (s, 2H), 2.76 (q, J = 7.5 Hz, 2H), 1.22 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.14, 161.40, 161.12, 158.20, 148.49, 138.32, 136.72, 130.01, 128.37, 128.04, 124.52, 123.37, 115.50, 19.72, 12.72. HRMS (ESI-TOF) m/z [M+H]⁺ calcd For C₁₇H₁₇N₄, 277.1453; found, 277.1448.

5-ethyl-2-phenyl-6-(thiophen-2-yl)pyrimidin-4-amine (5i) : yield, 65% (37 mg); white solid;

 $R_f = 0.45$ in 25% acetone in petroleum ether; melting point, 132-133°C; ¹H NMR (400 MHz,

CDCl₃) δ 8.45 – 8.40 (m, 2H), 7.54 (dd, J = 3.7, 0.9 Hz, 1H), 7.50 (dd, J = 5.1, 0.9 Hz, 1H), 7.49 – 7.41 (m, 3H), 7.16 (dd, J = 5.1, 3.7 Hz, 1H), 5.07 (s, 2H), 2.82 (q, J = 7.6 Hz, 2H), 1.35 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.13, 161.24, 155.79, 143.71, 138.05, 130.15, 128.76, 128.39, 128.02, 127.89, 127.79, 112.45, 20.08, 12.22. HRMS (ESI-TOF) m/z [M+H]⁺ calcd For C₁₆H₁₆N₃S, 282.1065; found, 282.1059.

(Z)-N'-(5-ethyl-2,6-di(thiophen-2-yl)pyrimidin-4-yl)thiop-hene-2-carboximidamide (6a): yield, 86% (62 mg); white solid; $R_f = 0.50$ in 25% acetone in petroleum ether; melting point,

133-134°C; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (dd, J = 3.6, 1.1 Hz, 1H), 7.66 (dd, J = 3.7,

0.8 Hz, 1H), 7.55 – 7.48 (m, 3H), 7.41 (dd, J = 5.0, 1.1 Hz, 1H), 7.17 (dd, J = 5.1, 3.8 Hz, 1H), 7.16 – 7.10 (m, 2H), 3.18 (q, J = 7.4 Hz, 2H), 1.40 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.73, 156.14, 155.16, 144.16, 143.74, 142.43, 131.22, 128.90, 128.57, 128.30, 128.23, 127.95, 127.92, 127.62, 126.54, 125.71, 21.06, 13.91. HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd For C₁₉H₁₇N₄S₃, 397.0615; found, 397.0610.

(*Z*)-*N*'-(5-ethyl-2,6-diphenylpyrimidin-4-yl)benzimidami-de (**6b**): yield, 76% (58 mg); white solid; $R_f = 0.50$ in 25% acetone in petroleum ether; melting point, 169-170°C; ¹H NMR (400

MHz, CDCl₃) δ 8.36 (d, J = 5.9 Hz, 2H), 8.06 (d, J = 6.8 Hz, 2H), 7.66 (d, J = 7.0 Hz, 2H), 7.59 – 7.41 (m, 9H), 2.97 (q, J = 7.1 Hz, 2H), 1.31 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.04, 165.59, 159.97, 140.17, 138.73, 136.77, 131.43, 130.02, 129.00, 128.82, 128.56, 128.54, 128.28, 127.98, 127.33, 21.32, 14.98. HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd For C₂₅H₂₃N₄, 379.1923; found, 379.1917.

(*Z*)-*N*'-(5-ethyl-2,6-diphenylpyrimidin-4-yl)picolinimida-mide (**6c**): yield, 85% (65 mg); white solid; $R_f = 0.50$ in 25% acetone in petroleum ether; melting point, 169-170°C; ¹H NMR (400 MHz, CDCl₃) δ 10.43 (s, 1H), 8.65 (d, *J* = 4.5 Hz, 1H), 8.60 (d, *J* = 7.9 Hz, 1H), 8.38 (dd, *J* = 7.6, 1.6 Hz, 2H), 8.32 (s, 1H), 7.87 (dd, *J* = 11.0, 4.4 Hz, 1H), 7.66 (d, *J* = 6.8 Hz, 2H), 7.55 – 7.40 (m, 7H), 2.97 (q, *J* = 7.3 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.41, 165.53, 160.24, 156.98, 152.10, 148.37, 140.24, 138.85, 137.11,

129.99, 129.02, 128.57, 128.51, 128.27, 128.02, 127.88, 125.76, 122.60, 21.45, 14.94. HRMS (ESI-TOF) m/z [M+H]⁺ calcd For C₂₄H₂₂N₅, 380.1875; found, 380.1870.

(Z)-N'-(5-ethyl-6-phenyl-2-(thiophen-2-yl)pyrimidin-4-yl)picolinimidamide (6d): yield, 86%

(66 mg); white solid; $R_f = 0.60$ in 25% acetone in petroleum ether; melting point, 160-161°C;

¹H NMR (400 MHz, CDCl₃) δ 10.29 (s, 1H), 8.65 (d, J = 4.7 Hz, 1H), 8.58 (d, J = 7.9 Hz, 1H), 8.37 (s, 1H), 7.94 (d, J = 3.6 Hz, 1H), 7.86 (td, J = 7.8, 1.4 Hz, 1H), 7.67 – 7.61 (m, 2H), 7.54 – 7.38 (m, 5H), 7.13 (dd, J = 4.9, 3.8 Hz, 1H), 2.94 (q, J = 7.3 Hz, 2H), 1.30 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.00, 165.39, 157.10, 156.71, 152.02, 148.34, 144.58, 139.90, 137.11, 129.00, 128.57, 128.26, 128.24, 128.18, 127.69, 127.65, 125.78, 122.61, 21.46, 14.96. HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd For C₂₂H₂₀N₅S, 386.1439; found, 386.1434.

2. ¹H NMR and ¹³C NMR of Products

ΌМе

- 19 -

Compound 2h

F CN F

Compound 2i

100 90 f1 (ppm)

Compound 2j

Compound 2k

Compound 21

Compound 2m

Compound 2n

Compound 20

Compound 2p

Compound 2r

f1 (ppm)

Compound 2s

Compound 2v

Compound 2w

Ó 100 90 f1 (ppm)

 $\text{Compound}\ 2y$

f1 (ppm)

Compound 3d

Compound 3e

100 90 f1 (ppm)

Compound 3f

Compound 3g

Compound 3h

Compound 3i

Compound 3j

Compound 3k

Compound 3k'

Compound 31

100 90 f1 (ppm)

127.82

H (s) 135.39

Compound 4b

Compound 4c

100 90 f1 (ppm)

Compound 4d

Compound 4e

f1 (ppm)

 $\text{Compound} \ 4f$

Compound 4g

Compound 4h

100 90 f1 (ppm)

Compound 4i

Compound 4j

f1 (ppm)

Compound 4k

Compound 41

Compound 4m

Compound 4n

Compound 4p

- 68 -

Compound 4r

f1 (ppm)

Compound 4s

Compound 4t

Compound 4u

Compound 5a

Compound 5c

110 100 f1 (ppm)

Compound 5d

Compound 5e

Compound 5f

Compound 5g

Compound 5h

Compound 5i

Compound 6a

Compound 6c

Compound 6d

3. X-ray crystal structures of compounds 2j, 4a and 5e

Figure S1. Crystal structures of compounds **2j** (CCDC number: 1956320) (a), **4a** (1956322) (b) and **5e** (1956323) (c).

4. Synthesis and Characterization of 2,3,3-triphenylacrylonitrile

Figure S2. Investigation of the reaction of phenylacetonitrile (1a) with benzophenone.

Synthesis of 2,3,3-triphenylacrylonitrile: phenylacetonitrile (0.20 mmol), benzophenone (0.2 mmol), lithium bis(trimethylsilyl)amide (0.20 mmol) and dried DME (1 mL) were mixed in a 50 mL Teflon screw-cap sealed tube. The tube was charged with N_2 (1 atm) and the mixture was stirred at 120 °C for 24 h. After cooling to room temperature, the reaction mixture was diluted with dichloromethane (20 mL), filtered through a pad of silica gel and concentrated under reduced pressure. The crude product was purified on a silica gel column eluted with petroleum ether/acetone (25 : 1 v/v) to afford 2,3,3-triphenylacrylonitrile.

2,3,3-triphenylacrylonitrile: yield, 80% (45 mg); white solid; $R_f = 0.60$ in 4% acetone in

petroleum ether; melting point, 167-168°C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.39 (m, 5H), 7.31 – 7.16 (m, 8H), 7.04 – 6.98 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.90, 140.54, 139.20, 134.95, 130.91, 130.05, 130.00, 129.84, 129.11, 128.61, 128.59, 128.48, 128.36, 120.25, 111.76.

