Supplementary Material

One-step synthesis of green emission carbon dots for selective and sensitive detection of nitrite ions and cellular imaging application

Minghui Zan^{a,d,1}, Cong Li^{c,1}, Fei Liao^{a,1}, Lang Rao^a, Qian-Fang Meng^a, Wei Xie^a, Bei Chen^a, Xingwang Qie^b, Li Li^b, Liang Wang^{c,*}, Wen-Fei Dong^{b,*}, Wei Liu^{a,d,*}

^a Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education,
School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
^b CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163,
China.

^cCollege of Life Science and Technology, Xinjiang University, Xinjiang 830046,

China

^d Shenzhen Research Institute of Wuhan University, Shenzhen, Guangdong 518057, China.

¹ These authors contributed equally to this work.

* Corresponding authors.

E-mail: wliu@whu.edu.cn (W. Liu); wenfeidong@126.com (W. Dong).

Supplementary Figures

Figure S1. Effect of ionic strengths on the fluorescence intensity of the carbon dots.

Figure S2. Effect of different pH values on the fluorescence intensity of the CDs.

Figure S3. Variation of fluorescence intensity of the CDs under irradiation of 365 nm UV light.

Figure S4. Stability of the carbon dots as a function of the storage time (6 weeks).

Figure S5. The relationship between F_0/F and NO₂⁻ ions concentration in the range of $0 - 40 \ \mu$ M.

Figure S6. (A) UV-vis absorption spectra of CDs, NO₂⁻, CDs+NO₂⁻; (B) Zeta potentials of CDs in the absence and presence of nitrite ions.

Figure S7. (A) TEM image and (B) DLS of CDs after the addition of NO_2^- (40 nM).

Figure S8. Establishment of standard curve using Griess-saltzman method.

Materials	Detection method	Linear range	LOD	Ref
N-CNDs	Fluorescent	0-2000 μM	1 μΜ	11
CDs/silica nanoparticles	Fluorescent	10-160 ng/mL	1.0 ng/mL	22
CDs-NaNO ₂ -H ₂ O ₂	Chemiluminescent	0.1-10 μM	53 nM	33
μPAD	Colorimetric	10-150 μM	1 μΜ	4 ⁴
Ag/C NC	Electrochemical	0.004-2 mM	0.48 µM	5 ⁵
RYDE CDs	Fluorescent	0.1-100 μΜ	31.61 nM	6 ⁶
N-CDs	Fluorescent	8–100 μM	0.65 µM	77
PCDs	Fluorescent	2-100 μΜ	0.55 μΜ	8 ⁸
CDs	Fluorescent	0.005-0.04 μM	2.8 nM	This work

Table S1: Comparison between reported probes for NO_2^- detection.

Samples	Added (µM)	Measured (µM)	Recovery (%)	RSD (%, n=5)
Tap water	5	5.06	101.2	1.8
Taihu water	5	5.11	102.2	2.3
Human urine	5	4.93	98.6	2.6
Serum	5	5.13	102.6	2.4

Table S2. The recovery rate of nitrites in real samples using Griess-saltzman method.

Note: The pretreatment procedure of samples and the establishment of the standard curve referenced to GB (5009.33-2016) of National food safety standard.

References

- H. Zhang, S. Kang, G. Wang, Y. Zhang and H. Zhao, ACS Sensors, 2016, 1, 875-881.
- G. Xiang, Y. Wang, H. Zhang, H. Fan, L. Fan, L. He, X. Jiang and W. Zhao, Food Chemistry, 2018, 260, 13-18.
- Z. Lin, W. Xue, H. Chen and J.-M. Lin, *Analytical Chemistry*, 2011, 83, 8245-8251.
- 4. B. M. Jayawardane, S. Wei, I. D. McKelvie and S. D. Kolev, *Analytical Chemistry*, 2014, **86**, 7274-7279.
- 5. S. Zhang, X. Liu, N. Huang, Q. Lu, M. Liu, H. Li, Y. Zhang and S. Yao, *Electrochimica Acta*, 2016, **211**, 36-43.
- 6. J. Liu, Y. Chen, L. Wang, M. Na, H. Chen and X. Chen, *Journal of Agricultural and Food Chemistry*, 2019, **67**, 3826-3836.
- J. Jia, W.-J. Lu, L. Li, Y. Jiao, Y.-F. Gao and S.-M. Shuang, *Chinese Journal* of Analytical Chemistry, 2019, 47, 560-566.
- 8. Y. J. Jiang, M. Lin, T. Yang, R. S. Li, C. Z. Huang, J. Wang and Y. F. Li, *Journal of Materials Chemistry B*, 2019, 7, 2074-2080.