Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Ruthenium polypyridyl complex-catalysed aryl alkoxylation of styrenes: Improving reactivity using a continuous-flow photo-microreactor

Eiji Yamaguchi,*^a Nao Taguchi and Akichika Itoh*^a *Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan* E-mail: yamaguchi@gifu-pu.ac.jp, itoha@gifu-pu.ac.jp

Table of Contents	
General information	S1
General Procedure for aryl alkoxylation of olefins with Flow Microreactor	S2
Preparation of aryldiazonium tetrafluoroborate	S2
Picture S1. The glass chip during the reaction	S 3
Picture S2. The LEDs array	S 3
Picture S3. General reaction setup	S 3
Scheme S1. Reaction without Ru complex	S4
Scheme S2. Reaction efficiency of the flow reaction compared with batch reaction	S4
Figure S1. The wave length and spectral irradiance of LED	S4
Characterization of prepared 3 and 4	S5
References	S13
¹ H and ¹³ C NMR Spectra of 3 and 4	S14

General Information

Unless otherwise noted, all reactants or reagents including dry solvents were obtained from commercial suppliers and used as received.

Analytical thin-layer chromatography (TLC) was carried out using 0.25 mm commercial silica gel plates (Merck silica gel 60 F254). Flash column chromatography was performed with Kanto silica gel 60N (Spherical, Neutral, 40–50 mm). Visualization of the developed chromatogram was performed by UV lamp (254 nm) and ceric ammonium molybdate solution stain.

NMR spectra were recorded on a JEOL ECA 500 spectrometer (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR), and are internally referenced to residual protio solvent signals or TMS (note: CDCl3 referenced at δ 7.26 and 77.0 ppm respectively, TMS referenced at δ 0 and 0 ppm respectively). Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, dd = doublet of doublets, ddd = doublet of doublets, td = triplet of doublets), coupling constant (Hz), integration, and assignment. Data for ¹³C NMR are reported in terms of chemical shifts (δ ppm).

IR spectra were recorded on a Perkin Elmer Spectrum 100 FTIR spectrometer and are reported in terms of frequency of absorption (cm⁻¹).

High-resolution mass spectra (HRMS) were obtained on a JEOL JMS-T100TD and are reported as m/z (M+H+, relative intensity).

Melting points were measured on a Yanagimoto micro melting point apparatus without correlation.

Glass (borosilicate glass) Chip for microreactor was from Dexerials Corporation.

General Procedure for aryl alkoxylation of olefins with Flow Microreactor

A solution of aryldiazonium tetrafluoroborate (0.35 mol/L) in MeCN and a solution of styrene (0.7 mol/L, 2.0 equiv) and Ru(bpy)₃Cl₂ \cdot 6H₂O (1.75 x 10⁻³ mol/L, 0.5 mol%) in MeOH were degassed *via* Freeze-Pump-Thaw (FPT) cycling for three times and backfilled with Ar. The two solutions were introduced into different channels respectively by using a syringe pump. Both streams were mixed in the channel of the reactor chip. Light (450 nm) from an LED array (sum: 1.20 W x 2) was used to irradiate the flow from a distance of 1.5 cm from the chip surface. The residue was filtrated through silica gel, washed with CHCl₃, concentrated in vacuo. The resulting mixture was purified by flash column chromatography on silica gel (*n*-hexane : EtOAc = 40 : 1) to give product.

General Procedure for aryl alkoxylation of olefins with Flow Microreactor 4d

A solution of aryldiazonium tetrafluoroborate (0.35 mol/L) in MeCN and a solution of styrene (0.7 mol/L, 2.0 equiv) and Ru(bpy)₃Cl₂ · $6H_2O$ (1.75 x 10⁻³ mol/L, 0.5 mol%) in DMF were degassed *via* Freeze-Pump-Thaw (FPT) cycling for three times and backfilled with Ar. The two solutions were introduced into different channels respectively by using a syringe pump. Both streams were mixed in the channel of the reactor chip. Light (450 nm) from an LED array (sum: 1.20 W x 2) was used to irradiate the flow from a distance of 1.5 cm from the chip surface. The residue was diluted with EtOAc, washed with water, dried with MgSO₄, and concentrated *in vacuo*. The resulting mixture was purified by flash column chromatography on silica gel (*n*-hexane : EtOAc = 40 : 1) to give product.

Preparation of aryldiazonium tetrafluoroborate

To a round-bottom flask, a solution of water (2.0 mL) and conc. HCI (2.0 mL) (1:1) was added to a mixture of aniline derivatives (10.0 mmol, 1.0 equiv) and conc. HCI (3.0 mL) at 0 °C. To this solution, a solution of NaNO₂ (1.1 equiv) in 1.5 mL of water was added dropwise and stirred for 30 min at 0 °C. After that, an ice cold solution of 45% aq. HBF₄ (10 mL) was added slowly to the reaction mixture and stirred for 15 min at 0 °C. The resulting solid precipitate was filtered and washed with ice cold water, dried under a vacuum desiccator, and stored at freezer.

Picture S2. Picture for LEDs array (40 mm x 65 mm; 0.05 W x 4 x 6; 450 nm)

	200	- 808.	-000
Bar	965	600.	603
		100 .	
	-100		
1 A	pe o	[]].	DO.

Picture S3. General reaction setup

$R + N_2BF_4 + MeOH : MeCN = 1:1$ 450 nm LED $(2 \text{ equiv.}) Total flow rate = 0.058 \text{ mL min}^{-1}$							
Entry	R	yield (%)	The reaction with Ru cat.; yield (%)				
1	<i>p</i> -cyano	71	78				
2	<i>p</i> -nitro	<10	66				
3	<i>p</i> -methoxy	n.d.	35				
4	<i>p</i> -methyl	n.d.	41				

Scheme S2. Reaction efficiency of the flow reaction compared with batch reaction

			Ar−N₂⁺BF₄⁻ 1 in MeCN	+ 2a Ru(pho in MeOH Idea	$(bpy)_3Cl_2 (0.5)$ to flow reactor al flow rate = 0 al residence to	mol%) or D.116 mL min ⁻¹ me = 6.2 min	Ar 3		
entry	1	Ar	conc. (mol/L)	2 conc.	3	yield _{flow}	STY (g h ⁻¹ L ⁻¹)	yield _{batch}	STY (g h ⁻¹ L ⁻¹)
1	1a	4-CNC ₆ H ₄	0.35	0.70	3aa	78	259.4	46	20.2
2	1b	4-MeC ₆ H ₄	0.35	0.70	3ba	41	131.1	42	17.8
3	1c	$4^{t}BuC_{6}H_{4}$	0.35	0.70	3ca	40	147	0	-
4	1d	4-MeOC ₆ H ₄	0.35	0.70	3da	35	118.3	0	-
5	1e	C_6H_5	0.35	0.70	3ea	62	188.5	49	21.6
6 ^c	1f	$4-NO_2C_6H_4$	0.175	0.35	3fa	66	234.3	58	27.2
7 ^d	1g	2-CNC ₆ H ₄	0.0875	0.175	3ga	58	192.8	60	26.4

Figure S1. The wave length and spectral irradiance of LED

4-[2-Methoxy-2-(4-tert-butylphenyl)ethyl]benzonitrile (3aa)¹

78% yield, 80 mg, 0.27 mmol (based on 0.35 mmol scale)

Yellow oil

<u>TLC (SiO₂</u>): $R_f = 0.36$ (*n*-hexane:ethyl acetate =10:1).

<u>¹H NMR</u>: (400 MHz, CDCl₃): δ 7.53 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.7 Hz, 2H), 7.24 (d, J = 8.2 Hz, 2H), 7.15 (d, J = 8.7 Hz, 2H), 4.29 (dd, J = 8.2 Hz, 5.0 Hz, 1H), 3.16 (s, 3H), 3.11 (dd, J = 13.7 Hz, 8.2 Hz, 1H), 2.93 (dd, J = 13.7 Hz, 5.0 Hz, 1H), 1.32 (s, 9H).

¹³C NMR: (100 MHz, CDCl₃): δ 150.9, 144.5, 137.8, 131.8, 130.2, 126.3, 125.3, 119.1, 110.0, 83.9, 56.7, 44.8, 34.5, 31.3.

4-[2-Methoxy-2-(4-methylphenyl)ethyl]benzonitrile (3ab)

69% yield, 61 mg, 0.24 mmol (based on 0.35 mmol scale)

White solid

TLC (SiO₂): $R_f = 0.22$ (*n*-hexane:ethyl acetate =10:1).

<u>m.p.</u>: 70.2-71.9 °C

<u>¹H NMR</u>: (400 MHz, CDCl₃): δ 7.52 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.2 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 8.2 Hz, 2H), 4.28 (dd, J = 7.8 Hz, 5.5 Hz, 1H), 3.16 (s, 3H), 3.12 (dd, J = 13.7 Hz, 7.8 Hz, 1H), 2.93 (dd, J = 13.7 Hz, 5.5 Hz, 1H), 2.35 (s, 3H).

1³C NMR: (100 MHz, CDCl₃): δ 144.2, 137.7, 137.6, 131.8, 130.3, 129.1, 126.6, 119.1, 110.0, 84.0, 56.6, 44.8, 21.1.

<u>HRMS</u>: m/z (DART) calcd for C₁₇H₁₈NO⁺ (M+H)⁺ 252.1383, found 252.1387.

FTIR: (neat): 2927, 2823, 2228, 1609, 1512, 1449, 1414, 1350, 1178, 1097, 1021, 817 cm⁻¹

62% yield, 55 mg, 0.22 mmol (based on 0.35 mmol scale)

White solid

TLC (SiO₂): $R_f = 0.22$ (*n*-hexane:ethyl acetate =10:1).

<u>m.p.</u>: 51.5-53.0 °C

<u>¹H NMR</u>: (400 MHz, CDCl₃): δ 7.53 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 7.6 Hz, 1H), 7.24-7.17 (m, 4H), 7.12 (d, J = 7.8 Hz, 1H), 4.59 (dd, J = 7.8 Hz, 4.8 Hz , 1H), 3.16 (s, 3H), 3.06 (dd, J = 13.7 Hz, 7.8 Hz , 1H), 2.92 (dd, J = 13.7 Hz, 4.8 Hz , 1H), 2.20 (s, 3H).

¹³C NMR: (100 MHz, CDCl₃): δ 144.3, 138.9, 135.2, 131.8, 130.4, 130.2, 127.5, 126.4, 125.8, 119.1, 110.1, 80.4, 56.7, 43.8, 18.9.

<u>HRMS</u>: m/z (DART) calcd for C₁₇H₁₈NO⁺ (M+H)⁺ 252.1383, found 252.1373.

FTIR: (neat): 2930, 2823, 2228, 1608, 1507, 1462, 1178, 1093, 825, 762, 734 cm⁻¹

4-[2-Methoxy-2-(4-methoxyphenyl)ethyl]benzonitrile (3ad)

56% yield, 53 mg, 0.20 mmol (based on 0.35 mmol scale) White solid

TLC (SiO₂): $R_f = 0.13$ (*n*-hexane:ethyl acetate =10:1).

m.p.: 73.7-75.7 °C

<u>**1H NMR**</u>: (400 MHz, CDCl₃): δ 7.52 (d, J = 8.2 Hz, 2H), 7.19 (d, J = 8.2 Hz, 2H), 7.12 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 4.26 (dd, J = 7.8 Hz, 6.0 Hz , 1H), 3.81 (s, 3H), 3.15 (s, 3H), 3.13 (dd, J = 13.7 Hz, 7.8 Hz, 1H), 2.93 (dd, J = 13.7 Hz, 6.0 Hz, 1H).

¹³C NMR: (100 MHz, CDCl₃): δ 159.3, 144.2, 132.7, 131.8, 130.3, 127.9, 119.1, 113.8, 110.0, 83.7, 56.5, 55.2, 44.8.

HRMS: *m*/z (DART) calcd for C₁₆H₁₄NO⁺ (M-MeOH+H)⁺ 236.1070, found 236.1061.

FTIR: (neat): 2934, 2837, 2227, 1610, 1512, 1464, 1415, 1304, 1247, 1174, 1095, 1034, 835, 775 cm⁻¹

60% yield, 57 mg, 0.21 mmol (based on 0.35 mmol scale)

Yellow solid

TLC (SiO₂): $R_f = 0.16$ (*n*-hexane:ethyl acetate =10:1).

<u>m.p.</u>: 79.5-81.3 °C

<u>**1H NMR**</u>: (400 MHz, CDCl₃): δ 7.53 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.19 (d, *J* = 8.2 Hz, 2H), 7.13 (d, *J* = 8.4 Hz, 2H), 4.30 (dd, *J* = 7.8 Hz, 5.5 Hz, 1H), 3.17 (s, 3H), 3.11 (dd, *J* = 13.7 Hz, 7.8 Hz, 1H), 2.92 (dd, *J* = 13.7 Hz, 5.5 Hz, 1H).

¹³C NMR: (100 MHz, CDCl₃): δ 143.6, 139.3, 133.6, 131.9, 130.3, 128.7, 128.0, 119.0, 110.2, 83.5, 56.8, 44.6.

<u>HRMS</u>: m/z (DART) calcd for C₁₆H₁₅CINO⁺ (M+H)⁺ 272.0837, found 272.0847.

<u>FTIR</u>: (neat): 2932, 2824, 2731, 2228, 1608, 1507, 1490, 1465, 1410, 1346, 1290, 1250, 1178, 1091, 1015, 833, 743 cm⁻¹

4-[2-Methoxy-2-(4-bromophenyl)ethyl]benzonitrile (3af)

45% yield, 51 mg, 0.16 mmol (based on 0.35 mmol scale)

Colorless and crystalline solid

TLC (SiO₂): $R_f = 0.13$ (*n*-hexane:ethyl acetate =10:1).

<u>m.p.</u>: 103.9-105.4 °C

<u>¹H NMR</u>: (400 MHz, CDCl₃): δ 7.53 (d, J = 8.2 Hz, 2H), 7.46 (d, J = 8.5 Hz, 2H), 7.19 (d, J = 8.2 Hz, 2H), 7.07 (d, J = 8.5 Hz, 2H), 4.29 (dd, J = 7.8 Hz, 5.5 Hz, 1H), 3.17 (s, 3H), 3.10 (dd, J = 13.7 Hz, 7.8 Hz, 1H), 2.92 (dd, J = 13.7 Hz, 5.5 Hz, 1H).

1³C NMR: (100 MHz, CDCl₃): δ 143.5, 139.8, 131.9, 131.6, 130.3, 128.3, 121.7, 119.0, 110.2, 83.5, 56.8, 44.6.

<u>HRMS</u>: m/z (EI+) calcd for C₁₅H₁₁BrN⁺ (M-MeOH+H)⁺ 284.0075, found 284.0067.

FTIR: (neat): 2986, 2931, 2824, 2227, 1608, 1592, 1507, 1485, 1404, 1344, 1297, 1228, 1178, 1095, 1071, 1011, 880, 830, 776, 746, 720 cm⁻¹

1-[2-Methoxy-2-(4-tert-butylphenyl)ethyl]-4-methylbenzene (3ba)

41% yield, 41 mg, 0.14 mmol (based on 0.35 mmol scale)

Orange oil

<u>TLC (SiO₂</u>): $R_f = 0.47$ (*n*-hexane:ethyl acetate =10:1).

<u>**1H NMR**</u>: (400 MHz, CDCl₃): δ 7.35 (d, *J* = 8.2 Hz, 2H), 7.19 (d, *J* = 8.2 Hz, 2H), 7.05 (m, 4H), 4.28 (dd, *J* = 8.2 Hz, 5.0 Hz, 1H), 3.17 (s, 3H), 3.04 (dd, *J* = 14.2 Hz, 8.2 Hz, 1H), 2.84 (dd, *J* = 14.2 Hz, 5.0 Hz, 1H), 1.33 (s, 9H).

1³C NMR: (100 MHz, CDCl₃): δ 150.5, 138.9, 136.0, 135.6, 129.3, 128.9, 126.5, 125.3, 85.0, 56.9, 44.5, 34.6, 31.5, 21.2.

<u>HRMS</u>: m/z (DART) calcd for C₁₉H₂₃⁺ (M-MeOH+H)⁺ 251.1794, found 251.1788.

<u>FTIR</u>: (neat): 2963, 2867, 2820, 1899, 1612, 1515, 1463, 1409, 1363, 1308, 1269, 1231, 1202, 1156, 1098, 1040, 1022, 1005, 977, 942, 880, 831, 810, 797, 756, 712, 692, 672 cm⁻¹

1-[2-Methoxy-2-(4-tert-butylphenyl)ethyl]-4-tert-butylbenzene (3ca)

40% yield, 46 mg, 0.14 mmol (based on 0.35 mmol scale)

Brown crystalline solid

TLC (SiO₂): $R_f = 0.47$ (*n*-hexane:ethyl acetate =10:1).

<u>m.p.</u>: 68.1-69.9 °C

<u>**1H NMR**</u>: (400 MHz, CDCl₃): δ 7.35 (d, *J* = 8.5 Hz, 2H), 7.28 (d, *J* = 8.2 Hz, 2H), 7.21(d, *J* = 8.5 Hz, 2H), 7.11 (d, *J* = 8.2 Hz, 2H), 4.31 (dd, *J* = 8.5 Hz, 4.6 Hz, 1H), 3.17 (s, 3H), 3.04 (dd, *J* = 14.2 Hz, 8.5 Hz, 1H), 2.84 (dd, *J* = 14.2 Hz, 4.6 Hz, 1H), 1.32 (s, 9H), 1.30 (s, 9H).

1³C NMR: (100 MHz, CDCl₃): δ 150.4, 148.8, 139.0, 136.0, 128.9, 126.3, 125.2, 125.0, 84.7, 56.8, 44.3, 34.5, 34.4, 31.4.

HRMS: *m*/z (DART) calcd for C₂₂H₂₉⁺ (M-MeOH+H)⁺ 293.2264, found 293.2260.

FTIR: (neat): 2963, 2868, 1510, 1464, 1410, 1364, 1269, 1203, 1102, 1020, 834 cm⁻¹

1-Methoxy-4-[2-methoxy-2-(4-tert-butylphenyl)ethyl]benzene (3da)

35% yield, 37 mg, 0.12 mmol (based on 0.35 mmol scale)

Yellow oil

TLC (SiO₂): $R_f = 0.41$ (*n*-hexane:ethyl acetate =10:1).

<u>¹H NMR</u>: (400 MHz, CDCl₃): δ 7.34 (d, J = 8.2 Hz, 2H), 7.17 (d, J = 8.2 Hz, 2H), 7.05 (d, J = 8.6 Hz, 2H), 6.79 (d, J = 8.6 Hz, 2H), 4.25 (dd, J = 8.0 Hz, 5.3 Hz, 1H), 3.78 (s, 3H), 3.17 (s, 3H), 3.03 (dd, J = 14.0 Hz, 8.0 Hz, 1H), 2.82 (dd, J = 14.0 Hz, 5.3 Hz, 1H), 1.32 (s, 9H).

1³C NMR</mark>: (100 MHz, CDCl₃): δ 157.9, 150.4, 138.7, 131.0, 130.3, 126.4, 125.1, 113.4, 85.0, 56.8, 55.2, 43.9, 34.5, 31.4.

HRMS: *m*/z (DART) calcd for C₁₉H₂₃O⁺ (M-MeOH+H)⁺ 267.1743, found 267.1745.

<u>FTIR</u>: (neat): 2961, 2905, 2868, 2835, 1613, 1585, 1512, 1464, 1442, 1408, 1363, 1301, 1246, 1203, 1177, 1098, 1038, 998, 978, 879, 833, 802, 756, 715, 692, 672 cm⁻¹

1-[1-Methoxy-2-phenylethyl]-4-tert-butylbenzene (3ea)

62% yield, 58 mg, 0.22 mmol (based on 0.35 mmol scale)

Yellow crystalline solid

<u>TLC (SiO₂</u>): $R_f = 0.45$ (*n*-hexane:ethyl acetate =10:1).

<u>m.p.</u>: 39.7-40.7 °C

<u>**1H NMR**</u>: (400 MHz, CDCl₃): δ 7.34 (d, *J* = 8.3 Hz, 2H), 7.25 (t, *J* = 7.0 Hz, 2H), 7.21-7.17 (m, 3H), 7.15 (d, *J* = 7.0 Hz, 2H), 4.31 (dd, *J* = 8.2 Hz, 5.0 Hz, 1H), 3.17 (s, 3H), 3.08 (dd, *J* = 13.7 Hz, 8.2 Hz, 1H), 2.88 (dd, *J* = 13.7 Hz, 5.0 Hz, 1H), 1.32 (s, 9H).

¹³C NMR: (100 MHz, CDCl₃): δ 150.5, 138.9, 138.7, 129.4, 128.1, 126.4, 126.1, 125.2, 84.8, 56.8, 44.8, 34.5, 31.4.

<u>HRMS</u>: m/z (DART) calcd for C₁₈H₂₁⁺ (M-MeOH+H)⁺ 237.1638, found 237.1645.

<u>FTIR</u>: (neat): 3029, 2964, 2868, 2821, 1605, 1510, 1496, 1454, 1409, 1363, 1269, 1202, 1100, 1078, 1031, 874, 833, 750, 701 cm⁻¹

1-[2-Methoxy-2-(4-tert-butylphenyl)ethyl]-4-nitrobenzene (3fa)¹

66% yield, 72 mg, 0.23 mmol (based on 0.35 mmol scale)

Yellow solid

<u>TLC (SiO₂</u>): $R_f = 0.40$ (*n*-hexane:ethyl acetate =10:1).

<u>**1H NMR**</u>: (400 MHz, CDCl₃): δ 8.11 (d, J = 8.7 Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.7 Hz, 2H), 7.16 (d, J = 8.2 Hz, 2H), 4.32 (dd, J = 8.2 Hz, 5.0 Hz, 1H), 3.16 (dd, 13.7 Hz, 8.2 Hz, 1H), 3.17 (s, 3H), 2.99 (dd, J = 13.7 Hz, 5.0 Hz, 1H), 1.33 (s, 9H).

1³C NMR: (100 MHz, CDCl₃): δ 151.0, 146.7, 146.5, 137.7, 130.3, 126.3, 125.4, 123.3, 83.9, 56.8, 44.5, 34.6, 31.4.

2-[2-Methoxy-2-(4-tert-butylphenyl)ethyl]benzonitrile (3ga)¹

58% yield, 59 mg, 0.20 mmol (based on 0.35 mmol scale)

Yellow oil

<u>TLC (SiO₂</u>): $R_f = 0.40$ (*n*-hexane:ethyl acetate =10:1).

¹<u>H NMR</u>: (400 MHz, CDCl₃): δ 7.61 (d, J = 8.2 Hz, 1H), 7.47 (dd, J = 8.2 Hz, 6.8 Hz, 1H), 7.37 (d, J = 8.2 Hz, 2H), 7.30 (dd, J = 7.8 Hz, 6.8 Hz, 1H), 7.29 (d, J = 7.8 Hz, 1H), 7.24 (d, J = 8.2 Hz, 2H), 4.42 (dd, J = 8.7 Hz, 4.6 Hz, 1H), 3.22 (dd, 14.2 Hz, 8.7 Hz, 1H), 3.17 (s, 3H), 3.13 (dd, J = 14.2 Hz, 4.6 Hz, 1H), 1.33 (s, 9H). ¹³C NMR: (100 MHz, CDCl₃): δ 150.8, 142.8, 137.9, 132.6, 132.3, 131.1, 126.7, 126.2, 125.4, 118.2, 112.8, 83.4, 56.9, 43.4, 34.5, 31.4.

54% yield, 58 mg, 0.19 mmol (based on 0.35 mmol scale)

Yellow oil

TLC (SiO₂): $R_f = 0.26$ (*n*-hexane:ethyl acetate =10:1).

<u>**1H NMR**</u>: (400 MHz, CDCl₃): δ 7.52 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.2 Hz, 2H), 7.25 (d, *J* = 8.2 Hz, 2H), 7.16 (d, *J* = 8.2 Hz, 2H), 4.37 (dd, *J* = 8.2 Hz, 5.0 Hz, 1H), 3.38 (dq, *J* = 9.2 Hz, 6.9 Hz, 1H), 3.21 (dq, *J* = 9.2 Hz, 7.3 Hz, 1H), 3.11 (dd, *J* = 13.7 Hz, 8.2 Hz, 1H), 2.91 (dd, *J* = 13.7 Hz, 5.0 Hz, 1H), 1.32 (s, 9H), 1.10 (dd, *J* = 7.3 Hz, 6.9 Hz, 3H).

1³C NMR: (100 MHz, CDCl₃): δ 150.7, 144.7, 138.6, 131.7, 130.3, 126.1, 125.3, 119.2, 109.9, 82.1, 64.2, 44.9, 34.5, 31.4, 15.2.

<u>HRMS</u>: m/z (DART) calcd for C₁₉H₂₀N⁺ (M-EtOH+H)⁺ 262.1590, found 262.1590.

FTIR: (neat): 2965, 2903, 2868, 2228, 1917, 1608, 1506, 1463, 1444, 1413, 1396, 1364, 1341, 1308, 1269, 1222, 1202, 1178, 1158, 1091, 1015, 950, 925, 884, 838, 738, 683 cm⁻¹

4-[2-lsopropoxy-2-(4-tert-butylphenyl)ethyl]benzonitrile (4b)

47% yield, 51 mg, 0.16 mmol (based on 0.35 mmol scale)

Yellow sticky oil

<u>TLC (SiO₂</u>): $R_f = 0.26$ (*n*-hexane:ethyl acetate =10:1).

<u>**1H NMR**</u>: (400 MHz, CDCl₃): δ 7.53 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.2 Hz, 2H), 7.26 (d, *J* = 8.2 Hz, 2H), 7.18 (d, *J* = 8.2 Hz, 2H), 4.47 (dd, *J* = 8.5 Hz, 4.7 Hz, 1H), 3.41 (sep, *J* = 6.1 Hz, 1H), 3.04 (dd, *J* = 13.7 Hz, 8.5 Hz, 1H), 2.88 (dd, *J* = 13.7 Hz, 4.7 Hz, 1H), 1.32 (s, 9H), 1.05 (d, *J* = 6.1 Hz, 3H), 0.91 (d, *J* = 6.1 Hz, 3H).

¹³C NMR: (100 MHz, CDCl₃): δ 150.5, 144.9, 139.4, 131.6, 130.4, 126.1, 125.2, 119.2, 109.8, 79.4, 69.0, 45.5, 34.5, 31.4, 23.3, 20.9.

<u>**HRMS**</u>: m/z (DART) calcd for C₁₉H₂₀N⁺ (M-^{*i*}PrOH+H)⁺ 262.1590, found 262.1581.

<u>FTIR</u>: (neat): 2967, 2870, 2228, 1608, 1506, 1465, 1413, 1376, 1331, 1269, 1176, 1139, 1123, 1072, 1017, 964, 836 cm⁻¹

4-[2-Benzyloxy-2-(4-tert-butylphenyl)ethyl]benzonitrile (4c)

42% yield, 54 mg, 0.15 mmol (based on 0.35 mmol scale)

White solid

<u>TLC (SiO₂</u>): $R_f = 0.22$ (*n*-hexane:ethyl acetate =10:1).

<u>m.p.</u>: 91.2-93.0 °C

<u>**1H NMR**</u>: (400 MHz, CDCl₃): δ 7.52 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 7.29-7.21 (m, 7H), 7.10-7.08 (m, 2H), 4.47 (dd, J = 8.7 Hz, 4.6 Hz, 1H), 4.45 (d, J = 12.0 Hz, 1H), 4.16 (d, J = 12.0 Hz, 1H), 3.15 (dd, J = 13.8 Hz, 8.7 Hz, 1H), 2.96 (dd, J = 13.8 Hz, 4.6 Hz, 1H), 1.34 (s, 9H).

¹³C NMR: (100 MHz, CDCl₃): δ 151.0, 144.5, 138.1, 138.0, 131.8, 130.4, 128.2, 127.6, 127.5, 126.4, 125.4, 119.2, 109.9, 81.3, 70.3, 45.0, 34.6, 31.4.

<u>HRMS</u>: m/z (DART) calcd for C₁₉H₂₀N⁺ (M-BnOH+H)⁺ 262.1590, found 262.1579.

FTIR: (neat): 2963, 2867, 2228, 1608, 1507, 1455, 1413, 1363, 1269, 1204, 1073, 1018, 838, 736 cm⁻¹

[2-(4-cyanobenzene)-1-(4-tert-butylphenyl)ethyl]formate (4d)

45% yield, 49 mg, 0.16 mmol (based on 0.35 mmol scale) orange sticky oil

TLC (SiO₂): $R_f = 0.17$ (*n*-hexane:ethyl acetate =10:1).

<u>¹H NMR</u>: (400 MHz, CDCl₃): δ 8.00 (s, 1H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.2 Hz, 2H), 7.25-7.21 (m, 4H), 6.05 (dd, *J* = 8.2 Hz, 6.0 Hz, 1H), 3.29 (dd, *J* = 13.7 Hz, 8.2 Hz, 1H), 3.15 (dd, *J* = 13.7 Hz, 6.0 Hz, 1H), 1.31 (s, 9H).

1³C NMR: (100 MHz, CDCl₃): δ 160.0, 151.7, 142.3, 135.5, 132.1, 130.3, 126.3, 125.6, 118.8, 110.7, 75.5, 42.7, 34.6, 31.3.

<u>HRMS</u>: m/z (DART) calcd for C₁₉H₂₀N⁺ (M-OCOH+H)⁺ 262.1590, found 262.1595.

<u>FTIR</u>: (neat): 2963. 2870, 2228, 1928, 1720, 1609, 1508, 1476, 1463, 1414, 1364, 1313, 1270, 1158, 1110, 1051, 1021, 984, 953, 889, 832, 776, 683 cm⁻¹

Reference

(1) E. Yamaguchi, W. Tanaka, A. Itoh, *Chem. Asian J.* **2019**, *14*, 121-124.

NMR spectra of 3aa

NMR spectra of 3ab

NMR spectra of 3ac

NMR spectra of 3ad

⁻S17-

NMR spectra of 3ae

NMR spectra of 3af

NMR spectra of 3ba

NMR spectra of 3ca

NMR spectra of 3da

NMR spectra of 3ea

NMR spectra of 3fa

NMR spectra of 3ga

NMR spectra of 4a

NMR spectra of 4b

NMR spectra of 4c

NMR spectra of 4d

