SUPPLEMENTARY INFORMATION

Development of an Automated Kinetic Profiling System with Online HPLC for Reaction Optimization

Melodie Christensen, ${ }^{* a, c}$ Folarin Adedeji, ${ }^{\text {a }}$ Shane Grosser, ${ }^{a}$ Kerstin Zawatzky, ${ }^{\text {b }}$ Yining Ji, ${ }^{\text {a Jinchu }}$ Liu, ${ }^{\text {b }}$ Jon A. Jurica, ${ }^{\text {a }}$ John R. Naber, ${ }^{\text {a }}$ and Jason E. Hein*c
*Email for M.C.: melodie.christensen@merck.com, Email for J.E.H.: jhein@chem.ubc.ca

Contents

1. General Remarks 2
1.1. Chemical Suppliers 2
1.2. Equipment. 2
1.3. Analytical Methods 3
2. Experimental Procedures 4
2.1. Procedures for Automated Kinetic Profiling 4
2.2. Procedures for Preparation of Reaction Components 6
2.3. Sample Chemspeed Autosuite Protocol for Automated Kinetic Profiling 9
2.4. Picture of Chemspeed Robot Deck 10
3. Characterization of New Compounds 11
4. Calibration Curves 15

1. General Remarks

1.1. Chemical Suppliers

Methyl 3-cyclopropyl-3-oxopropanoate 1 (Accela SY001027) and (3-(benzyloxy)phenyl)boronic acid 4 (Acros 358860250) were purchased from commercial sources and used without further purification. Pd-dppf-G3 5 (Cat\# 804983) and Pd-PPh 3 -G2 11 (Cat\# 752762) were purchased from Millipore Sigma; $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Cat\# 46-0450) was purchased from Strem Chemicals. All reactions requiring anhydrous or air-free conditions were run in anhydrous solvents purchased from Millipore Sigma.

1.2. Equipment

Automated reaction monitoring was carried out on a Chemspeed Swing liquid handling robot equipped with an adjustable-pitch four needle (0.8 mm ID) liquid dispense tool, a V\&P Scientific tumble stirrer and a Huber Unistat 82T chiller. The robot was integrated with an Agilent 1100 HPLC-UV system through installation of a two position, 6 -port HPLC valve on the Chemspeed Swing deck and connection to the Agilent 1100 through 0.17 mm ID tubing. Bilateral communication was established between the Chemspeed Autosuite software and the HPLC valve. Also, unilateral communication was established between the Chemspeed Autosuite software and the Agilent 1100 HPLC-UV (Figure S1).

Figure S1: Schematic of the Chemspeed Swing Agilent 1100 integration
Reactions were carried out in sealed 4 ml borosilicate glass vials with red pressure relief caps (CG-4912-01). Vigorous agitation was achieved with parylene-coated NdFeB magnetic tumble stir discs (VP 782N6). Reaction aliquots were sampled into 96-well dilution plates (Analytical Sales 17P687) capped with pre-slit silicone/PTFE cap mats (Analytical Sales 965075).

1.3. Analytical Methods

Column: Imtakt Unison UK-C18 $3 \mu \mathrm{~m}$ 10x2 mm (UK020)
Column Temperature: $55^{\circ} \mathrm{C}$
pH 3.5 Ammonium Formate Buffer: 12.6 g ammonium formate +7.9 ml formic acid to 1 L water Mobile Phase A: 40 ml pH 3.5 ammonium formate buffer +3960 ml Water
Mobile Phase B: 40 ml pH 3.5 ammonium formate buffer +360 ml Water +3600 ml ACN Injection volume: $20 \mu \mathrm{l}$
Wavelength Monitored: 210 nm

Time (min)	Flow (ml/min)	\%MPA	\%MPB
0.00	1.00	95.0	5.0
3.50	1.00	0.0	100.0
3.90	1.00	0.0	100.0
3.91	1.00	95.0	5.0
4.00	1.00	95.0	5.0

Figure S2: Representative HPLC trace
Retention times of quantified reaction components:

Name	Retention Time
1,3,5-Trimethoxybenzene IS	1.65 min
Aryl boronic acid $\mathbf{4}$	1.83 min
Phenol 9	1.92 min
Carbazole 7	2.33 min
E-Tosylate 3-(E)	2.40 min

Z Suzuki Product 6-(Z)	2.78 min
E Suzuki Product 6-(E)	2.85 min
Aryl Aminobiphenyl Adduct 8	2.91 min
Pd-dppf-G3 Precatalyst 5	3.09 min
Biaryl 10	3.19 min

2. Experimental Procedures

2.1. Procedures for Automated Kinetic Profiling

Reaction set-up procedure 1 (Figures 2, 3 and 4): To a 4 ml reaction vial equipped with a magnetic tumble stir disc under N_{2} atmosphere was charged (E)-methyl 3-cyclopropyl-2-methyl-3(tosyloxy)acrylate 3-(E) ($40.0 \mathrm{mg}, 0.129 \mathrm{mmol}$), (3-(benzyloxy)phenyl)boronic acid 4 (32.3 mg , $0.142 \mathrm{mmol})$, palladium precatalyst $5(5.96 \mathrm{mg}, 6.44 \mu \mathrm{~mol})$ and 1,3,5-trimethoxybenzene (2.17 $\mathrm{mg}, 0.013 \mathrm{mmol})$. ACN ($1000 \mu \mathrm{l}$) and water ($10 \mu \mathrm{l}$) were added and the mixture agitated to dissolve all solids. To a 40 ml vial was charged $\mathrm{K}_{3} \mathrm{PO}_{4}(2.12 \mathrm{~g}, 10.0 \mathrm{mmol})$ and water to dilute to 10 ml . The resulting 1 M aqueous $\mathrm{K}_{3} \mathrm{PO}_{4}$ solution was then sparged with N_{2} gas for 30 min in preparation for automated dispensing ($387 \mu \mathrm{l}, 0.387 \mathrm{mmol}$). Finally, to a 96 -well sample dilution plate was charged 400μ l of a 9:1 mixture of acetonitrile and aqueous pH 3.5 ammonium formate buffer.'

Note for Figure 4b: $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(5.26 \mathrm{mg}, 6.44 \mu \mathrm{~mol})$ utilized instead of precatalyst 5.
Reaction set-up procedure 2 (Figure 5): To a 4 ml reaction vial equipped with a magnetic tumble stir disc under N_{2} atmosphere was charged $250 \mu \mathrm{l}$ of a 400 mM solution of (E)-methyl 3-cyclopropyl-2-methyl-3-(tosyloxy)acrylate 3-(E) in ACN ($31.0 \mathrm{mg}, 0.100 \mathrm{mmol}$), $250 \mu \mathrm{l}$ of a 440 mM solution of (3-(benzyloxy)phenyl)boronic acid 4 in ACN ($25.1 \mathrm{mg}, 0.110 \mathrm{mmol}$), $250 \mu \mathrm{l}$ of a 4 mM solution of $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in $\mathrm{ACN}(0.817 \mathrm{mg}, 1.00 \mu \mathrm{~mol})$ and $100 \mu \mathrm{l}$ of a 100 mM solution of $1,3,5$-trimethoxybenzene in ACN ($1.68 \mathrm{mg}, 0.010 \mathrm{mmol}$). Water ($10 \mu \mathrm{l}$) was added and the mixture agitated to dissolve all solids. To a 40 ml vial was charged $\mathrm{K}_{3} \mathrm{PO}_{4}(2.12 \mathrm{~g}, 10.0 \mathrm{mmol})$ and water to dilute to 10 ml . The resulting 1 M aqueous $\mathrm{K}_{3} \mathrm{PO}_{4}$ solution was then sparged with N_{2} gas for 30 min in preparation for automated dispensing ($300 \mu \mathrm{l}, 0.300 \mathrm{mmol}$). Finally, to a 96 -well
sample dilution plate was charged $400 \mu \mathrm{l}$ of a 9:1 mixture of acetonitrile and aqueous pH 3.5 ammonium formate buffer. ${ }^{\text {' }}$

Note for Figure 5b: Dispensed $250 \mu \mathrm{l}$ of an 8 mM solution of $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in $\mathrm{ACN}(1.63 \mathrm{mg}$, $2.00 \mu \mathrm{~mol})$ instead of a 4 mM solution.

Automated sampling procedure: The reaction vial, aqueous $\mathrm{K}_{3} \mathrm{PO}_{4}$ vial and dilution plate were sealed and placed on the Chemspeed Swing robot deck for automated initiation, sampling, dilution and HPLC injection (Figure S3). The robot deck was inerted under positive pressure N_{2} atmosphere, tumble stirring was initiated (300-500 rpm), and the reaction vial temperature set to $25^{\circ} \mathrm{C}$. To the reaction vial was transferred 1 M aqueous $\mathrm{K}_{3} \mathrm{PO}_{4}$ by needle. This was immediately followed by transfer of a 20μ l aliquot from the reaction vial to the dilution plate by needle. Upon transfer, a $200 \mu \mathrm{l} \mathrm{N}_{2}$ cushion was drawn by the needle, followed by a $200 \mu \mathrm{l}$ aliquot from the dilution plate. The 200 ul aliquot and N_{2} cushion were then re-dispensed to the dilution plate at $10 \mathrm{ml} / \mathrm{min}$ flow rate to effectively mix the sample. A $50 \mu \mathrm{l}$ aliquot was then transferred from the dilution plate to the injection port of the HPLC selection valve, over-filling the $20 \mu \mathrm{l}$ loop with diluted sample. Once the loop was filled, the valve was switched and the HPLC run triggered, allowing the HPLC pump to push the mobile phase through the loop, moving the sample into the HPLC column. The valve was then rinsed with 1000μ l of acetonitrile. This sampling, dilution and injection procedure was repeated every 5-20 minutes until reaction completion.

Note for Figure 3: 300 rpm agitation rate; HPLC injection repeated after a 20 h hold. Note for Figures 4 and 5: 500 rpm agitation rate.

Figure S3: Schematic of the Automated Kinetic Profiling System with Online HPLC

2.2. Procedures for Preparation of Reaction Components

Synthesis of (E)-Methyl 3-cyclopropyl-2-methyl-3-(tosyloxy)acrylate 3-(E)

To a 500 ml round bottomed flask equipped with a magnetic stir bar under N_{2} atmosphere was charged methyl 3-cyclopropyl-3-oxopropanoate 1 ($39.2 \mathrm{~g}, 276 \mathrm{mmol}$), Mel ($17.2 \mathrm{ml}, 276 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(57.2 \mathrm{~g}, 414 \mathrm{mmol})$. The mixture was agitated at $25^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ and filtered. The solids were rinsed with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ and the filtrate was concentrated to a crude oil. The crude oil was purified by normal phase column chromatography to give methyl 3-cyclopropyl-2-methyl-3-oxopropanoate $\mathbf{2}^{1}$ in $\mathbf{7 9 \%}$ yield.

To an oven-dried 1000 ml round bottomed flask equipped with a magnetic stir bar under N_{2} atmosphere was added methyl 3-cyclopropyl-2-methyl-3-oxopropanoate 2 ($10.0 \mathrm{~g}, 64.0 \mathrm{mmol}$) and THF (100 ml). The mixture was cooled to $-78^{\circ} \mathrm{C}$ and 1 M NaHMDS solution ($96.0 \mathrm{ml}, 96.0$ mmol) was added over 30 min , maintaining the internal temperature below $-60^{\circ} \mathrm{C}$, followed by a THF rinse (50 ml). The mixture was aged for 1 h at $-78{ }^{\circ} \mathrm{C}$ and $\mathrm{Ts}_{2} \mathrm{O}(31.3 \mathrm{~g}, 96.0 \mathrm{mmol})$ in THF $(200 \mathrm{ml})$ was added over 1 h , maintaining the internal temperature below $-60^{\circ} \mathrm{C}$. The mixture was aged for 20 min at $-78{ }^{\circ} \mathrm{C}$, then warmed to $25^{\circ} \mathrm{C}$ and aged for 2 h . A thick slurry formed. The reaction was quenched with 300 ml of 0.5 M NaHCO 3 solution and the phases were separated. The aqueous layer was back-extracted twice with 100 ml of EtOAc. The organic layers were combined and washed with 200 ml of saturated NaCl solution, dried over MgSO_{4} and filtered. Upon concentration to an oil, the crude product was purified by normal phase column chromatography to give (E)-methyl 3-cyclopropyl-2-methyl-3-(tosyloxy)acrylate 3-(E) ${ }^{1}$ in 30\% yield and (Z)-methyl 3-cyclopropyl-2-methyl-3-(tosyloxy)acrylate 3-(Z) ${ }^{1}$ in 54% yield.

Synthesis of (E)-Methyl 3-(3-(benzyloxy)phenyl)-3-cyclopropyl-2-methylacrylate 6-(E)

To a 40 ml reaction vial equipped with a magnetic stir bar under N_{2} atmosphere was charged (E)methyl 3-cyclopropyl-2-methyl-3-(tosyloxy)acrylate 3 -(E) (1.00 $\quad \mathrm{g}, \quad 3.22 \mathrm{mmol}$), (3(benzyloxy)phenyl)boronic acid $4(0.808 \mathrm{~g}, 3.54 \mathrm{mmol})$, and palladium precatalyst 5 (0.298 g , 0.322 mmol). Acetonitrile (15 ml) and 1 M aqueous $\mathrm{K}_{3} \mathrm{PO}_{4}$ solution ($9.67 \mathrm{ml}, 9.67 \mathrm{mmol}$) were added and the reaction agitated at $25^{\circ} \mathrm{C}$ for 8 h . To the reaction was added 10 ml of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ quench and organic layer was separated from the aqueous layer. The aqueous layer was back-extracted twice with 10 ml of ethyl acetate. The combined organic layers were washed with 10 ml of saturated NaCl solution, dried over MgSO_{4} and filtered. Upon concentration to an oil, the crude product was purified by normal phase column chromatography to give (E)-methyl 3-(3-(benzyloxy)phenyl)-3-cyclopropyl-2-methylacrylate 6-(E) in 52\% yield and (Z)-methyl 3-(3-(benzyloxy)phenyl)-3-cyclopropyl-2-methylacrylate 6-(Z) ${ }^{1}$ in 33% yield.
(E)-Methyl 3-(3-(benzyloxy)phenyl)-3-cyclopropyl-2-methylacrylate 6-(E) ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d ${ }_{6}$) $\delta 7.45-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{dd}, \mathrm{J}=8.3,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.57-6.54(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.56-2.51(\mathrm{~m}$, $1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 0.66-0.53(\mathrm{~m}, 2 \mathrm{H}), 0.20-0.08(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, DMSO- d_{6}) $\delta 169.85,158.44,150.78,138.69,137.44,129.84,128.87$, 128.26, 128.16, 124.33, 121.09, 115.03, 114.36, 69.64, 51.90, 18.21, 14.70, 5.64.

Synthesis of 3'-(benzyloxy)-[1,1':2',1'-terphenyl]-2-amine 8, 3-(benzyloxy)phenol 9 and 3,3'-bis(benzyloxy)-1,1'-biphenyl 10

To a 40 ml reaction vial equipped with a magnetic stir bar under N_{2} atmosphere was charged (E)methyl 3-cyclopropyl-2-methyl-3-(tosyloxy)acrylate 3 -(E) (200 mg, 0.644 mmol), (3(benzyloxy)phenyl)boronic acid 4 ($162 \mathrm{mg}, 0.709 \mathrm{mmol}$) and palladium precatalyst 11 (18.4 mg, 0.032 mmol). Acetonitrile (5 ml) and 1 M aqueous $\mathrm{K}_{3} \mathrm{PO}_{4}$ solution ($1.93 \mathrm{ml}, 1.93 \mathrm{mmol}$) were added and the reaction was agitated at $25^{\circ} \mathrm{C}$ for 30 min . To the reaction was added 10 ml of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ quench and organic layer was separated from the aqueous layer. The aqueous layer was back-extracted twice with 10 ml of ethyl acetate. The combined organic layers were washed with 10 ml of saturated NaCl solution, dried over MgSO_{4} and filtered. Upon concentration to an oil, the crude product was purified by reverse phase HPLC to give $3^{\prime \prime}$-(benzyloxy)-[1, $1^{\prime}: 2^{\prime}, 1^{\prime \prime}$ -
terphenyl]-2-amine 8 in 2% isolated yield, 3-(benzyloxy)phenol 9 in 7% isolated yield and 3,3'-bis(benzyloxy)-1,1'-biphenyl 10 in 4% isolated yield.

3"-(benzyloxy)-[1,1':2',1"-terphenyl]-2-amine $8^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d 6) $\delta 7.49$ - 7.41 (m, $3 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.86-$ $6.78(\mathrm{~m}, 3 \mathrm{H}), 6.70(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}$, 1H), 4.86 (s, 2H), 4.45 (s, 2H).
${ }^{13}$ C NMR (126 MHz, DMSO- d_{6}) $\delta 158.14,145.65,142.71,141.06,138.19,137.48,131.42$, $130.93,130.57,129.29,128.87,128.26,128.23,128.17,128.03,126.44,121.81,116.65,115.62$, 115.03, 113.96, 69.48.

3-(benzyloxy)phenol $9{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 9.39(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.39-$ $6.33(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, DMSO- d_{6}) $\delta 160.03,159.02,137.72,130.31,128.87,128.20,128.05$, 108.49, 105.94, 102.55, 69.46.

3,3'-bis(benzyloxy)-1, 1'-biphenyl $10^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 7.51-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.44$ $7.39(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{dd}, \mathrm{J}=$ 8.1, 2.1 Hz, 2H), 5.19 (s, 4H).
${ }^{13}$ C NMR (126 MHz, DMSO-d ${ }_{6}$) $\delta 159.28,142.00,137.62,130.42,128.91,128.29,128.19$, 119.78, 114.61, 113.60, 69.73.

2.3. \quad Sample Chemspeed Autosuite Protocol for Automated Kinetic Profiling

- บ่̊ 1	Transfer Volumetrically	Transfer liquid from valve ports C to Waste 1 with Needle Head \#1					02 min 16 sec
- 2	Heat / Cool	Thermostat ON on zone Reactions					15 min 00 sec
- 3	Stir	Agitation ON on zone Reactions					02 sec
z 4	HPLC Injection	Execute Once		Reaction Profiling			00 sec
$\square 1$	Macro Task	Execute Once					00 sec
- \%3 1	Transfer Volumetrically	Transfer liquid from Initiator to v		One_reaction'	Needle		00 sec
-z2	Macro Task	Execute Once					00 sec
¢ บ่̊ 1	Transfer Volumetrically	Transfer liquid from variable 'One_reaction' to variable 'one_sampl					00 sec
- 8 83	Transfer Volumetrically	Transfer liquid from variable 'one_sample' to variable 'one_sample'					00 sec
- ix 3	Transfer Volumetrically	Transfer liquid from variable 'one_sample' to Injection valve 2 Loac					00 sec
- ${ }^{\text {W }}$	Wait	Waiting for 2 seconds					02 sec
- $=5$	Switch Contact	Switch electrical contact 1 on					00 sec
-6	Wait	Waiting for 2 seconds					02 sec
$\bigcirc 8$	Switch Contact	Switch electrical contact 1 off					00 sec
- ixi 8	Transfer Volumetrically	Transfer liquid from Port C1 to Injection valve 2 Inject with Needle					43 sec
- ${ }^{\text {回 } 9}$	Wait	Waiting for 2:45 minutes					02 min 45 sec
Name: HPLC Injection				Loop Vari	loop	Fragment Variable: fragment	
Vari	Name Aray	Initial Value	Unit/Type	- Execute	1		\$ Times
injection_vol	\square	50	ul	C Execute if condition			
valve_rinse_vol	\square	1	ml				
needle__inse_vol	\square	1	ml				
spl_vol	\square	20	ul	C Execute while condition			
mix_vol	\square	200	ul				
mix_airgap_vol	\square	200	ul	C Batch - Sequential	'Sequential Zone' Variable Name	Value	Fragment Size
initiator_vol	\square	375	ul		One_reaction	Reactions	1
					Rixtn_samples	LC Samples	24

2.4. Picture of Chemspeed Robot Deck

3. Characterization of New Compounds

0312650-0601-E-PR.10.fid
rynmr500d h-1

0312650-0601-E-PR.11.fid
rynmr500d c-13 (night, $2.5 \mathrm{hr}, \mathrm{ns}=5120$)

0312650-0601-F4.12 fid
rynmr500c c-13 (night, $2.5 \mathrm{hr}, \mathrm{ns}=5120$)

9

0312650-0601-F2.11.fid
rynmr500c c-13 (night, $2.5 \mathrm{hr}, \mathrm{ns}=5120$)

9

0312650-0601-F5.12.fid
rynmr $500 \mathrm{c} \mathrm{c}-13$ (night, $2.5 \mathrm{hr}, \mathrm{ns}=5120$)

10

4. Calibration Curves

Four mixtures of varying molar concentration ratios of target compound to 1,3,5trimethoxybenzene were prepared and injected on the online HPLC system. These molar ratios were then plotted against the area count ratios of target compound to 1,3,5-trimethoxybenzene. Upon linear regression with the intercept set at zero, the response factor for each target compound was determined and used to calculate the concentration values presented in Figures 2,4 and 5 of the main manuscript.

See section 1.3. Analytical Methods for preparation of pH 3.5 ammonium formate buffer.
These compounds were previously characterized in M. Christensen, A. Nolting, M. Shevlin, M. Weisel, P. E. Maligres, J. Lee, R. K. Orr, C. W. Plummer, M. T. Tudge, L.-C. Campeau and R. T. Ruck, J. Org. Chem., 2016, 81, 824-830.

