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A Supplementary Material
A.1 Heat transport correlations
Jacket

The heat transport coefficient for the reactor jacket kjac in eqn (15) is obtained via

kjac =

(
1

λjac
ln((R + δjac)/R)

)−1

,

to compensate radial mismatch between inner and outer jacket surface. Its impact on the overall heat
transport is illustrated in Fig. A.6.

Cooling channel

The heat transport inside the cooling channel (considered as an annular gap) is calculated via the correlations
from Gnielinski [Gni10]. As heat transfer medium we selected the synthetic oil Marlotherm SH and used
the corresponding thermo-physical properties as described in [Pre10]. Fig. A.1 illustrates our results for the
coolant Nusselt number over a broad coolant Reynolds number range and for different technically relevant
coolant temperatures.

Furthermore, we assume technically relevant values for coolant velocity and hydraulic cooling channel
diameter as:

vcool = 1 – 2 m

s
and dh = 0.01 – 0.02m.

The resulting cooling regime in Fig. A.1 relevant for our study is shaded in red. Consequently, two limiting
cases can be identified to estimate a reasonable range for the coolant heat transfer coefficient αcool:

Max. case:

Tcool = 573 K ∆pcool = 0.3 bar
dh = 0.02 m V̇cool = 2.1 l/s

vcool = 2 m/s

Recool = 8.9× 104 ⇒ Nucool = 560

⇒ αcool = 2632
W

m2 K
,
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Figure A.1: Nu-Re-dependency for the heat transfer medium Marlotherm SH ; dh = 0.01m and L = 2.5m;
thermo-physical data from [Pre10].

Min. case:

Tcool = 373 K ∆pcool = 0.04 bar
dh = 0.01 m V̇cool = 0.45 l/s

vcool = 1 m/s

Recool = 3.2× 103 ⇒ Nucool = 30

⇒ αcool = 360
W

m2 K
.

Thus, the reference heat transfer coefficient αcool of 500 W/m2 K used in this study is relatively moderate,
so that the coolant supply is rather not a limiting factor of our proposed control approach.

A.2 Rate expressions
The rate expressions used in our model are adapted from Xu and Froment [Xu89] and Koschany et al.
[Kos16], which have been implemented via the following correlations.

Xu and Froment

Xu and Froment [Xu89] considered three rate equations including the water-gas-shift (WGS) reaction:

r1 =
k1
p 2.5

H2

(
p

CH4
p

H2O
−

p 3
H2

p
CO

K1

)/
DEN2, (A.1)

r2 =
k2
p

H2

(
p

CO
p

H2O
−

p
H2

p
CO2

K2

)/
DEN2, (A.2)

r3 =
k3
p 3.5

H2

(
p

CH4
p 2

H2O
−

p 4
H2

p
CO2

K3

)/
DEN2, (A.3)
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where pα is the partial pressure of the respective component in bar and DEN is a dimensionless parameter
defined as

DEN = 1 +K
CO

p
CO

+K
H2

p
H2

+K
CH4

p
CH4

+
K

H2O
p

H2O

p
H2

.

Kα is the respective adsorption constant for CH4, CO, H2O and H2 and bβ are rate coefficients exponentially
depending on temperature via:

Kα = Aα exp

(
−∆Hα

RT

)
,

kβ = Aβ exp

(
− Eβ

RT

)
.

Aβ , Eβ , Aα, ∆Hα are constant kinetic parameters stated in Tab. A.1.

Table A.1: Kinetic parameters for Eqs. (A.1) to (A.3); each pre-exponential factor contains a multiplier of
1.225 (see Xu and Froment [Xu89])

α Formula Aα [Aα] ∆Hα [∆Hα] β Aβ [Aβ ] Eβ [Eβ ]

1 CH4 8.15×10−4 bar−1 -38.28 kJ
mol 1 5.176×1015 kmol bar0.5

kgcat h
240.10 kJ

mol

2 CO 10.08×10−5 bar−1 -70.65 kJ
mol 2 2.395×10 6 kmol

kgcat h bar 67.13 kJ
mol

4 H2O 2.17×10 5 88.68 kJ
mol 3 1.250×1015 kmol bar0.5

kgcat h
243.90 kJ

mol

5 H2 7.50×10−9 bar−1 -82.90 kJ
mol

The temperature dependent equilibrium constants K1, K2 and K3 are based on the Gibbs reaction energy
(STP) as shown in Poling et al. [Pol01].

Finally, a unit conversion is required to adequately implement these rate equations to eqn (4) and (5):

r̃β = rβ ρcat 1000/3600.

Koschany et al.

Koschany et al. [Kos16] exclusively considered CO2 methanation to describe they experimental kinetic data.
The corresponding rate equation is:

rmeth = k p 0.5
CO2

p 0.5
H2

(
1−

p
CH4

p 2
H2O

Keq pCO2
p 4

H2

)/
DEN2, (A.4)

DEN = 1 +KOH

p
H2O

p0.5
H2

+KH2
p0.5

H2
+Kmix p

0.5
CO2

, (A.5)

which is determined by the following correlations for rate coefficient k, adsorption constant Kx and equilib-
rium constant Keq:

k = k0,ref exp

(
EA

R

(
1

Tref
− 1

T

))
, (A.6)

Kx = Kx,0,ref exp

(
∆Hx

R

(
1

Tref
− 1

T

))
, (A.7)

Keq = 137T−3.998 exp

(
158.7 kJ/mol

RT

)
. (A.8)

Again, a unit conversion is required to adequately implement this rate equation to eqn (4) and (5):

r̃meth = rmeth ρcat 1000.
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Table A.2: Kinetic parameters for Eqs. (A.6) to (A.8); (see Koschany et al. [Kos16])
Tref 550 K
k0,ref 3.46e-4 mol/(bar s gcat)
EA 77.5 kJ/mol
KOH,0,ref 0.5 bar−0.5

∆HOH 22.4 kJ/mol
KH2,0,ref 0.44 bar−0.5

∆HH2 -6.2 kJ/mol
Kmix,0,ref 0.88 bar−0.5

∆Hmix -10 kJ/mol

A.3 Reference case details
In order to enable a simple replication of our results, we outline detailed information on the reference reactor
setting in Table 1 and the corresponding steady state assuming a coolant temperature of Tcool = 550 K.
Furthermore, surface plots illustrate the finite volume mesh density and provide a clearer visualization of
our chosen PDE discretization.
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Figure A.2: Conversion, composition, temperature, pressure and velocity changes along the entire reactor
length; reactor setting according to Table 1 and at Tcool = 550 K
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Reaction
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Figure A.3: Temperature, CO2-composition, effectiveness factor and reaction rate changes around the reac-
tive zone; reactor setting according to Table 1 and at Tcool = 550 K
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Heat and mass transport
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Figure A.4: Temperature, Reynolds number, Prandtl number and effective axial Péclet number around the
reactive zone; reactor setting according to Table 1 and at Tcool = 550 K
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Figure A.5: Temperature, effective radial conductivity, effective axial conductivity and effective CH4 diffusion
coefficient around the reactive zone; reactor setting according to Table 1 and at Tcool = 550 K
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Figure A.6: Heat transport coefficients and cumulative heat transfer from reactor to coolant along the entire
reactor length; reactor setting according to Table 1 and at Tcool = 550 K
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A.4 Influence of axial heat dispersion
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Figure A.7: Influence of axial heat dispersion on steady-state temperature profile (at center); reactor setting
according to Table 1 and at Tcool = 550 K
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