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BRIEF ANALYSIS OF METHANATION KINETICS

The kinetics chosen for this work were developed by Xu & Froment1 for both reforming 

and methanation, which are reverse of each other. The authors ensured that thermodynamic 

consistency of the rate expressions. In this ESI document, we analyze Reaction-3, although the 

same arguments are valid for the other three reactions as well. 

A brief literature review on CO2 methanation shows that the activation energy on Ni 

catalyst is in the range of 70 to 100 kJ/mol. For example, Weatherbee & Bartholomew2 reported 

a constant EA = 94 kJ/mol for Langmuir-Hinshelwood rate expression. Maatman & Hiemstra3 

reported activation energies at different CO2:H2 ratios, and found them to be in the range of 79 

to 91.6 kJ/mol. Beierlein et al.4 studied structure-activity relationships of CO2 methanation and 

reported that all catalysts had similar values of activation energies, between 79 and 86 kJ/mol. 

Garbarino et al.5 reported similar apparent activation energies for Ni/Al2O3 (80 kJ/mol); the 

same authors6 reported activation energy of 75 kJ/mol for catalysts containing smaller particles 

of Ni; Lefebevre et al.7 found the apparent activation energy is 79 kJ/mol; Konishcheva et al.8 

reported activation energy of 90 kJ/mol on Ni(Cl)/CeO2 for CO2 methanation and 140 kJ/mol 

for CO methanation. Tada et al.9 presented sponge Ni as a promising catalyst for CO2 

methanation with apparent activation energy of 70 kJ/mol to 99 kJ/mol on NiO/CeO2.

In contrast, the activation energy for Reaction-3 reported in Table 1 as 243.9 kJ/mol. Since 

Xu & Froment1 had written the rate expressions for reforming and WGS, this is the activation 

energy for methane reforming to CO2, i.e. CH4 + 2H2O   CO2 + 4 H2. Let us consider the ⇌ 

CO2 methanation reaction:
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Reaction-3:     CO2 + 4 H2  CH4 + 2H2O ⇌
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This can be written in a normal “reversible” form as
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where, . Using the expressions given in Tables 1 and 2 of the manuscript, we �̅�3 = 𝑘3/𝐾3

computed  for temperatures in the range of 300 to 900 K. Figure S1 shows that  vs. 1/T �̅�3 ln (�̅�3)

is linear, with the Arrhenius equation for  showing an excellent fit:�̅�3
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Figure S1: Numerical calculation of activation energy for the forward reaction for CO2 

methanation. Symbols represent the value obtained by substituting rate constants from Table 

1 and Table 2, whereas the line represents a linear fit.

With this expression, the activation energy for CO2 methanation is 69.54 kJ/mol, which 

falls in the range of what is reported in the literature. In summary, it could be argued that the 

rate of Reaction-3 would be mathematically equivalent to:
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