SUPPORTING INFORMATION

Streamlined synthesis of the neurosteroid 3β -methoxypregnenolone assisted by statistical experimental design and automation

Valentina Mancino^{,a} Federico Croci,^a Anna Maria Lozza,^a Bruno Cerra^a and Antimo Gioiello^{*a}

^a Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122 Perugia, Italy.

* To whom correspondence should be addressed. Tel: +39 075 5852318. Fax: +39 075 5855160. E-mail: antimo.gioiello@unipg.it

Table of Contents

- General methods	S2
- Preliminary reaction screening and DoE optimization	S3
- Continuous flow synthesis of MAP4343 (1)	S4
- Flow synthesis of pregnenolone (2) from 16-dehydropregnenolone acetate (16-DPA, 8)	S4
- Compounds characterization	S5
- Figure S1. HPLC calibration curves of compounds 1, 2, 6 and 7	S7
- Figure S2. Statistical analysis for the calibration curves of compounds 1, 2, 6 and 7	S8
- Figure S3 (Overview of the results based on calibration curves)	S9
- Figures S4-S6 (Omnifit Labware DIBA columns for scavenging and CTH reaction)	S9
- Figures S7-S10. Contour plots for observable responses of compounds 1, 2, 6 and 7	S10
- Figures S11-S14. Normal plots of residuals relative to compounds 1, 2, 6 and 7	S11
- Scheme S1. Mechanism for the formation of the side-products 6 and 7	S12
- Scheme S2. Integrated multistep flow synthesis of MAP4343 from diosgenin	S13
- Scheme S3. Set-up for the continuous flow synthesis of MAP4343 designed by Asia Manager	S14
- NMR spectra	S15
- HPLC analysis	S25
- References	S27

General methods

Unless otherwise noted, chemicals were obtained from commercial suppliers and used without further purification. Melting points were determined using a electrothermal apparatus (Buchi 535, B-535, Büchi, Switzerland) and are uncorrected. NMR spectra were recorded on a Bruker AC 400 MHz spectrometer (Bruker, Madison, WI – USA) in the indicated solvent. Chemical shifts are reported in parts per million (ppm) and are relative to CDCl₃ (7.26 ppm and 77.0 ppm) or to d^{6} -DMSO (2.49 ppm and 39.7 ppm). The abbreviations used are as follows: s, singlet; brs, broad singlet; d, doublet; dd, double doublet; t, triplet; q, quartet; m, multiplet; brm, broad multiplet. Thin-layer chromatography was performed on aluminum backed silica plates (silica gel 60 F-254, Merck, Darmstadt, Germany). Spots were visualized by UV detector (λ : 254 nm) and/or by staining and worming with phosphomolibdic acid (5% wt in EtOH). When required, flash chromatographic purifications were performed using Biotage IsoleraTM Prime (Biotage, Uppsala, Sweden). Synthesised compounds were previously reported and spectroscopic data were consistent with the literature.^{1,2}

The continuous flow synthesis of 16-DPA (8) from diosgenin (3) was performed using a a Vapourtec R2+/R4 module (Vapourtec Ltd., Bury Saint Edmunds, UK) as previously described.³ The flow synthesis of MAP4343 (1) from 16-DPA (8) was performed using a commercially available modular flow system (Asia Syrris, Blacktrace Holdings Ltd, Royston, UK) connected to a laptop and controlled by Asia manager PC software (version 1.6). The modular apparatus consists of an Asia automated reagent injector (AutoRIM) equipped with removable vial racks (8 mL vials), two internal loops (2 mL and 5 mL), two-channels Asia syringe pumps (Asia blue syringes, 0.50 mL/1.0 mL and Asia red syringes 2.5 mL/5 mL), an Asia sampler and dilutor, external HPLC pumps (Jasco PU-980, Jasco, Easton, MD – USA), thermocouple-controlled coil reactors (1/16" OD, 0.8 mm ID, 10 mL, PTFE), residence time coil reactors (9 mL, 1/16" OD, 0.8 mm ID, PTFE), glass tubular mesoreactors (Omnifit Labware DIBA HIT[™] column, ID × L 6.6 mm x 100 mm and Labware DIBA BenchMark Microbore[™] column, ID × L 3 mm x 50 mm), T-shaped mixing elements (0.5 mm ID), back pressure regulators (BPR, 40 psi, 100 psi and 250 psi, PEEK, 1/16" OD, 1/4"-28), 3-way hexagonal valves (PTFE, 1/4"-28, 1-4 mm OD, 1.5 mm ID, DIBA), 6-way valves (PTFE, 1/4"-28, 0.5-4 mm OD, 1.5 mm ID, DIBA), an in-line liquid-liquid separator (SEP-10, Zaiput, Cambridge, MA -USA), an UV detector and a fraction collector (Gilson FC 203B, Gilson Inc., Middleton, WI – USA). Flow hydrogenation was performed on the H-Cube apparatus (Thalesnano Nanotechnology Inc., Budapest, Hungary) using 10% Pd/C cartridge (s-cart, 30 × 4 mm i.d.). Design of experiments and statistical data analysis was performed using Design-Expert[®] v. 9 (Stat-Ease Inc., Minneapolis, MN – USA). Calibrated HPLC analyses were performed on a Shimadzu (Kyoto, Japan) LC-20A Prominence, equipped with a CBM-20A communication bus module, two LC-20AD dual piston pumps, a SPD-M20A photodiode array detector, and a Rheodyne 7725i injector (Rheodyne Inc., Cotati, CA – USA) with a 100 μ L stainless steel loop. A GraceSmart RP18 column (Grace, Sedriano, Italy, 250 x 4.6 mm i.d., 5 mm, 100 Å) was used as the analytical column. The HPLC analyses were performed at 210 nm and 254 nm detection wavelengths and a 1.0 mL min⁻¹ eluent flow rate, after previous conditioning by passing through the column the selected mobile phase for at least 30 min at the same eluent velocity. Before use, all the mobile phases were always filtered through a 0.22 mm Millipore filter (Bedford, MA – USA) and then degassed with 20 min sonication. The column temperature was controlled through a heather/chiller thermostat (Grace 7956 R, Grace, Sedriano, Italy). All the analyses were performed at a 25 °C column temperature using analytical grade MeCN and ultrapure water (σ = 18.3 M Ω x cm) obtained through New Human machine Power I Scholar (Human Corporation, Seoul, Korea) purification system.

Preliminary reaction screening and DoE optimization

A solution of pregnenolone (**2**, 108 mg, 0.34 mmol, 0.2 M) in CH₂Cl₂ and a solution of MeOTf (77-154 μ L, 0.68-1.36 mmol, 2-4 equiv., 0.7 M) in CH₂Cl₂ were injected by the automated reagent injector, pumped with the appropriate flow rate and mixed in a T-shaped mixing element. Then, the mixture entered in a second T-shaped mixing element and reacted with solution of DMAN (**5**, 109-182 mg, 0.51-0.85 mmol, 1.5-2.5 equiv., 0.34 M) in MeCN pumped with the appropriate flow rate. The resulting mixture was reacted into a thermocouple-controlled coil reactors (10 mL, τ = 45 min) heated at the desired temperature. The system was maintained at constant pressure through a BPR element (40 psi). Upon UV detection and software control (Asia Manage), the reactor outcome passed through a 6-way switching valve of a sampler dilutor device (Syrris, Asia Sampler and Dilutor), which was connected to an analytical HPLC (Shimadzu LC-20A Prominence) for online yield determination. At regular intervals corresponding to resident time, an aliquot (5 μ L) of the crude mixture was collected, diluted and injected into the HPLC apparatus. Reactions were performed in a sequential, automated flow-through fashion and experiments were collected using a fraction collector. Lines were washed with a solution of CH₂Cl₂/MeCN (1.7:1, v/v) before the next run.

Continuous flow synthesis of MAP4343 (1)

A solution of pregnenolone (2, 633 mg, 2 mmol, 0.2 M) in CH₂Cl₂ (10 mL) and a solution of MeOTf (792 μ L, 7 mmol, 3.5 equiv., 0.70 M) in CH₂Cl₂ (10 mL) were pumped with a flow rate of 31.5 μ L min⁻¹ for each pump and mixed in a T-shaped mixing element. Then, the mixture was directed into a second T-shaped element and mixed with solution of DMAN (5, 857 mg, 4 mmol, 2.0 equiv., 0.34 M) in MeCN (12 mL) which was pumped with a flow rate of 37 μ L min⁻¹. The resulting mixture was reacted into a reactor coil (10 mL, τ = 100 min) heated at 34 °C. The reactor output was guenched with an in-line stream of H₂O (0.5 mL min⁻¹) and the biphasic mixture was separated by an in-line membrane liquid-liquid separator. The organic phase was pumped with a flow rate of 0.5 mL min⁻¹ through a glass tubular mesoreactors (Omnifit Labware DIBA HIT[™] column, ID × L 6.6 mm x 100 mm) filled with alternate layers of Amberlyst A21/silica (2:1 w/w, 4 layers, 300 mg for each layer, loading: 1.3 meq mL⁻¹ by wetted bed volume) (see Fig. S4). The outcome was flowed through a second glass tubular mesoreactors (Omnifit Labware DIBA HIT[™] column, ID × L 6.6 mm x 100 mm) filled with alternate layers of Amberlyst A15/silica (2:1 w/w, 4 layers, 300 mg for each layer, loading: 4.7 meq g⁻¹ by dry weight) (see Fig. S5). The output was collected, dried over anhydrous Na₂SO₄, concentrated under reduce pressure (<40 °C) to afford crude MAP4343 (1, 86% yield by calibrated RP-HPLC). The crude was purified by automated flash chromatography (Eluent: petroleum ether/EtOAc from 100:0 to 80:20, v/v) affording the desired MAP4343 (1, 552 mg, 1.67 mmol, 84% isolated yield, 1.92 g d⁻¹ of productivity) as white solid. Trapped DMAN (5) was recovered by washing Amberlyst A15 with 3 N aqueous solution of HCl (812 mg, 3.18 mmol, 81% recovery as chlorohydrate).

Flow synthesis of pregnenolone (2) from 16-dehydropregnenolone acetate (16-DPA, 8)

A solution of 16-DPA (**8**, 150 mg, 0.42 mmol, 0.07 M), prepared as previously reported,³ and HCO₂NH₄ (265 mg, 4.2 mmol, 10.0 equiv., 0.7 M) in MeOH/THF (1:0.6 v/v, 6 mL) was pumped with a flow rate of 27 μ L min⁻¹ through a thermostatically controlled (100 °C) glass tubular mesoreactors (Labware DIBA BenchMark MicroboreTM column, ID × L 3 mm x 50 mm) packed with 5% Pd/Al₂O₃ (22.5 mg, 15% wt with respect to **8**) diluted with Al₂O₃ (220 mg, 1: 9.7 w/w with respect to Pd/Al₂O₃, bed volume: 0.27 mL, τ = 10 min). The system was maintained at constant pressure through a BPR element (100 psi). The flowing mixture was collected in a residence time

reactor (1/16" OD, PTFE, 9 mL) before changing the flow rate for the hydrolysis step. After setting the flow rate at 0.87 mL min⁻¹, the solution was mixed in a T-shaped mixing element with an aqueous solution of KOH (236 mg, 4.2 mmol, 10 equiv., 3.5 M), pumped by an external HPLC pump at 0.13 mL min⁻¹, before entering a coil reactor (10 mL, τ = 10 min) thermostated at 100 °C. The system was maintained at constant pressure through a BPR element (250 psi). The outflowing mixture was collected in a fraction collector and the solvent was evaporated to dryness. The residue was neutralised with 3 N aq. HCl and extracted with EtOAc (3 x 10 mL), washed with H₂O (20 mL) and brine (20 mL), dried on Na₂SO₄ and evaporated to dryness. Crude **2** (126 mg, 0.40 mmol, 95% recovery, 924 mg d⁻¹ of productivity from **8**) was analysed by ¹H-NMR (400 MHz, CDCl₃) and RP-HPLC (97% purity).

As an alternative protocol, a solution of 16-DPA (**8**, 150 mg, 0.42 mmol, 0.07 M) in MeOH (1:0.6 v/v, 6 mL) was pumped with a flow rate of 0.5 mL min⁻¹ through a 10% Pd/C cartridge (s-cart, 30 × 4 mm i.d., τ = 4.5 min) thermostated at 25 °C and hydrogenated at 3 bar in a H-Cube apparatus. The output (V= 18 mL) was collected and mixed in a T-shaped mixing element with a methanolic solution of KOH (236 mg, 4.2 mmol, 10 equiv., 0.23 M), pumped by an external HPLC pump at 0.5 mL min⁻¹. The resulting mixture was reacted into a reactor coil (10 mL, τ = 10 min) heated at 50 °C. The system was maintained at constant pressure through a BPR element (100 psi). The outflowing mixture was collected and the solvent was evaporated to dryness. The residue was neutralised with 3 N aq. HCl and extracted with EtOAc (3 x 10 mL), washed with H₂O (20 mL) and brine (20 mL), dried on Na₂SO₄ and evaporated to dryness. Crude **2** (131 mg, 0.41 mmol, 98% recovery, 2 g d⁻¹ productivity from **8**) was analysed by ¹H-NMR (400 MHz, CDCl₃) and RP-HPLC (96% purity).

Compounds characterization

3-Methoxypregnenolone (MAP4343) (1)²

White solid (m.p.: 123–124 °C; lit.:² 123–124 °C). ¹H-NMR (CDCl₃, 400 MHz): δ 0.62 (s, 3H, 18-CH₃), 0.99 (s, 3H, 19-CH₃), 2.12 (s, 3H, 21-CH₃), 2.30-2.45 (m, 1H), 2.52 (t, J= 8.87 Hz, 1H), 3.02-3.09 (m, 1H, 3 α -CH), 3.35 (s, 3H, 3-OCH₃), 5.35 (d, J= 4.56 Hz, 1H, 6-CH). ¹³C-NMR (CDCl₃, 100.6 MHz): δ 13.0, 19.1, 20.8, 22.5, 24.2, 27.7, 31.3, 31.6 (2x), 36.6, 36.9, 38.4, 38.6, 43.7, 49.8, 55.3, 56.6, 63.4, 79.9, 121.0, 140.6, 209.2. Residence time (t_R): 20.754 min. Analytical and spectroscopic data are consistent with literature.²

Pregnenolone (2)¹

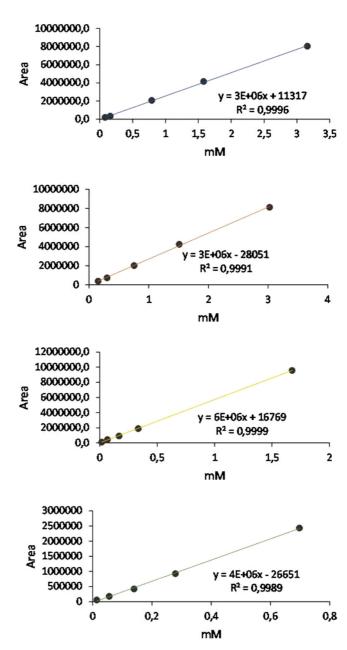
White solid (m.p.: 189–191 °C; lit.:² 190–191 °C). ¹H-NMR (CDCl₃, 400 MHz): δ 0.63 (s, 3H, 18-CH₃), 1.01 (s, 3H, 19-CH₃), 2.13 (s, 3H, 21-CH₃), 3.51-3.56 (m, 1H, 3 α -CH), 5.37 (d, J= 4.85 Hz, 1H, 6-CH). ¹³C-NMR (CDCl₃, 100.6 MHz): δ 13.1, 19.3, 21.0, 22.7, 24.4, 31.4 (2x), 31.6, 31.7, 36.4, 37.1, 38.7, 42.1, 43.9, 49.8, 56.8, 63.6, 71.5, 121.2, 140.7, 209.5. Residence time (t_R): 7.526 min. Analytical and spectroscopic data are consistent with literature.¹

Pregn-3,5-dien-20-one (6)²

Pale yellow solid (m.p.: 136–137 °C; lit.:² 135–136 °C). ¹H-NMR (CDCl₃, 400 MHz): δ 0.66 (s, 3H, 18-CH₃), 0.94 (s, 3H, 19-CH₃), 2.14 (s, 3H, 21-CH₃), 2.56 (t, *J*= 8.87 Hz, 1H), 5.39 (d, *J*= 2.96 Hz, 1H, 6-CH), 5.61 (d, *J*= 3.60 Hz, 1H, 3-CH), 5.94 (d, *J*= 8.55 Hz, 1H, 4-CH). ¹³C-NMR (CDCl₃, 100.6 MHz): δ 13.5, 18.9, 21.1, 22.9, 23.1, 24.5, 29.9, 31.7, 31.9, 33.9, 35.3, 39.0, 44.3, 48.4, 57.3, 63.9, 122.9, 125.3, 129.0, 141.5, 209.8. Residence time (t_R): 33.911 min. Analytical and spectroscopic data are consistent with literature.²

3-Acetylpregnenolone (7)¹

White solid (m.p.: 149–151 °C, lit.:⁴ 148–150 °C). ¹H-NMR (CDCl₃, 400 MHz): δ 0.61 (s, 3H, 18-CH₃), 1.00 (s, 3H, 19-CH₃), 2.02 (s, 3H, 3-CHOCOCH₃), 2.11 (s, 3H, 21 CH₃), 2.50-2.52 (m, 1H), 4.57-4.60 (m, 1H, 3 α -CHOCOCH₃), 5.35 (d, *J*= 5.22 Hz, 1H, 6-CH). ¹³C-NMR (CDCl₃, 100.6 MHz): δ 13.0, 19.1, 20.8, 21.2, 22.5, 24.2, 27.5, 31.4, 31.5, 31.6, 36.3, 36.7, 37.8, 38.5, 43.8, 49.6, 56.6, 63.4, 73.6, 122.1, 139.4, 170.3, 209.4. Residence time (t_R): 19.437 min. Analytical and spectroscopic data are consistent with literature.¹


Conc. (mg/mL)	Conc. (mM)	Areaª		
0,025	0,078991437	199458,5		
0,05	0,157982875	350355,5		
0,25	0,789914373	2070413		
0,5	1,579828747	4150951,5		
1	3,159657493	8045429		

MAP4343(1)

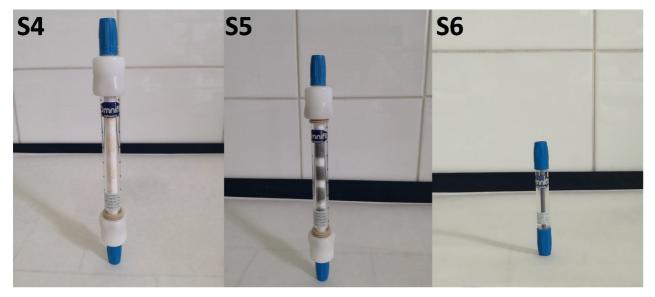
Conc. (mg/mL)	Conc. (mM)	Агеа		
0,025	0,151281353	378150		
0,05	0,302562706	726085		
0,25	0,756406765	2016612		
0,5	1,512813531	4252602		
1	3,025627061	8143738		

Conc. (mg/mL)	Conc. (mM)	Areaª		
0,005	0,016752102	123195,5		
0,02	0,06700841	445261,5		
0,05	0,167521024	923956		
0,1	0,335042048	1914897,5		
0,5	1,675210239	9582250		

3-Acetylpregnenolone (7)

Conc. (mg/mL)	Conc. (mM)	Area*		
0,005	0,013946612	60197		
0,02	0,055786449	179369		
0,05	0,139466124	422518		
0,1	0,278932247	927675		
0,25	0,697330618	2435923		

^{*}Average of two measurements


Fig. S1. HPLC calibration curves for the quantitative determination of pregnenolone (**2**), MAP4343 (**1**), pregn-3,5-dien-20-one (**6**) and 3-acetylpregnenolone (**7**). Each solution was analyzed in triplicate. *Conditions*: column: Grace Smart RP18; eluent: $H_2O/MeCN$ (30:70, v/v); flow rate: 1 mL/min; detector: UV-vis (Ch1: 210 nm; Ch2: 254 nm); column T: 25 °C; injection volume: 20 µL.

		_						
		Pregneno	nole (2)					
Regression sta	tistics							
R multiple	0,999789451							
R squared	0,999578947	,						
Adjusted R squared	0,999438596	i						
Standard error	77234,75628							
Number of observations	5							
	gdl	SQ	MQ	F	Significance F			
Regression	1			7121,998869	3,66732E-06			
Residue	3	17895622734	5965207578					
Total	4	4,25021E+13						
	Coefficients	Standard error	Stat t	Significance value	Inf. 95%	Sup. 95%	Inf. 95,0%	Sup. 95,0%
Intercept	11316,98499	49159,13804	0,23021122	0,832732417	-145129,3322	167763,302	-145129,332	167763,302
Variable X 1	2559670,983	30330,75319	84,391936	3,66732E-06	2463144,99	2656196,98	2463144,99	2656196,98
		MAP43	43 (1)					
Regression stat	tistics		(-/					
R multiple	0,999565468	<u>.</u>						
R squared	0,999131125							
Adjusted R squared	0,9988415							
Standard error	108951,3581							
Number of observations	5							
	gdl	SQ	MQ	F	Significance F			
Regression	1	•	4,095E+13	3449,739601	1,08727E-05			
Residue	3		1,187E+10					
Total	4	4,09854E+13						
	C. Sister	Chan dan daman	Charte	Circuiti and a second	Laf. 05%	C 05%	h.f. 05.0%	Curr 05 00/
	Coefficients	Standard error	Stat t	Significance value	Inf. 95%	Sup. 95%	Inf. 95,0%	Sup. 95,0%
Intercept	-28050,55556			0,723663806		201806,592	-257907,704	201806,592
Variable X 1	2723652,853	46372,29565	58,7344839	1,08727E-05	2576075,512	2871230,19	2576075,512	2871230,19
		Pregn-3,5-dien	-20-one (6)					
Regression stati	istics							
R multiple	0,999961414							
R squared	0,99992283							
Adjusted R squared	0,999897107							
Standard error	40194,74829							
Number of observations	5							
	gdl	SQ	MQ	F	Significance F			
Regression	1	6,28029E+13	6,2803E+13	38872,37084	2,87719E-07			
Residue	3	4846853371	1615617790		_,,			
Total	4	6,28077E+13						
	Coefficients	Standard error	Stat t	Significance value	Inf. 95%	Sup. 95%	Inf. 95,0%	Sup. 95,0%
Intercept	16769,39249	22237,63885	Stat t 0,75409951	0,505581222	-54000,69909	87539,4841	-54000,6991	87539,4841
Variable X 1	5706619,733	28943,99131	197,160774	2,87719E-07	5614507,034	5798732,43	5614507,034	5798732,4

Fig. S2. Statistical analysis of the calibration curves for MAP-4343 (1), pregnenolone (2), 3-acetylpregnenolone (7) and pregn-3,5-dien-20-one (6).

	Slope Intercept	Slope 25	2559671 Slo	Slope	2723653	Slope	3508285	Slope	5706620
		11317	Intercept	-28051	Intercept	-26651	Intercept	16769	
	R ²	0,9998	R ²	0,9996	R ²	0,9995	R ²	0,99996	
	Pregnenolone (2)		MAP4343 (1)		3-Acetylpregnenolone (7)		Pregn-3,5-dien-20-one (6)		
	Area	Yied (%)	Area	Yield (%)	Area	Yield (%)	Area	Yield (%)	
Entry 1 Table 3	10580991	68,6	4705777	28,9	521087	2,6	0	0,0	
Entry 2 Table 3	7965699	54,5	6598823	42,7	454049	2,4	144724	0,4	
Entry 3 Table 3	4042375	36,1	7360837	62,2	227131	1,7	0	0,0	
Entry 4 Table 3	4714430	62,0	3034266	38,0	0	0,0	0	0,0	
Entry 5 Table 3	5155597	33,9	9673091	60,2	1200700	5,9	0	0,0	
Entry 6 Table 3	6029357	38,7	9879936	59,9	280045	1,4	0	0,0	
Entry 7 Table 3	3952485	37,9	6540492	59,3	374744	2,8	0	0,0	
Entry 8 Table 3	764056	16,0	1470964	30,0	1073509	17,1	3891113	37,0	
Run 1 DoE Table 4	34950371	79,7	9276527	20,0	172517	0,3	0	0,0	
Run 2 DoE Table 4	11236054	17,5	54702186	80,2	1435560	1,7	908417	0,6	
Run 3 DoE Table 4	18629891	65,2	9595043	31,7	77195	0,3	1850800	2,9	
Run 4 DoE Table 4	1451851	18,3	12780184	78,0	391233	2,2	496604	1,5	
Run 5 DoE Table 4	30894619	28,3	80873764	69,7	2380425	1,6	763394	0,3	
Run 6 DoE Table 4	4199648	19,9	17124692	76,7	827196	3,0	213363	0,4	
Run 7 DoE Table 4	1233884	12,6	7914316	78,9	179255	1,6	1947854	6,9	
Run 8 DoE Table 4	3498741	26,8	9469207	69,7	648884	2,9	186882	0,6	
Run 9 DoE Table 4	582721	6,0	8753219	86,6	216382	1,9	1196933	5,6	
Run 10 DoE Table 4	1484125	17,5	6712085	75,3	110394	1,2	1144554	6,0	
Run 11 DoE Table 4	5159651	33,0	5991956	65,9	142683	1,1	46091	0,0	
Check point 1 Table 6	2601843	14,3	16189488	83,9	287643	1,3	249503	0,6	
Check point 2 Table 6	857383	5,2	15126795	88,0	257560	1,3	1987331	5,5	
Scale-up + downstrem	120723	7,9	1246021	86,2	56595	1,5	64136	4,4	
Intergated from 16-DPA	2105039	5,1	40611744	92,7	1197268	2,2	100570	0,1	

Fig. S3. Overview of the results based on calibration curves.

Fig. S4-S6. Omnifit Labware DIBA HITTM column (ID × L 6.6 mm x 100 mm) filled with alternate layers of Amberlyst A21/silica (2:1 w/w, 4 layers, 300 mg for each layer) (**S4**); Omnifit Labware DIBA HITTM column (ID × L 6.6 mm x 100 mm) filled with alternate layers of Amberlyst A15/silica (2:1 w/w, 4 layers, 300 mg for each layer) (**S5**); Labware DIBA BenchMark MicroboreTM column (ID × L 3 mm x 50 mm) packed with 5% Pd/Al₂O₃ diluted with Al₂O₃ (22.5 mg/220 mg) (**S6**).

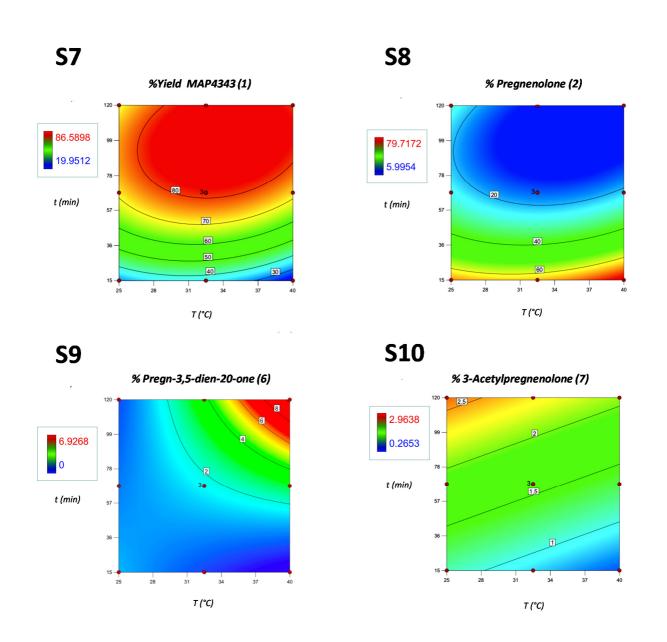
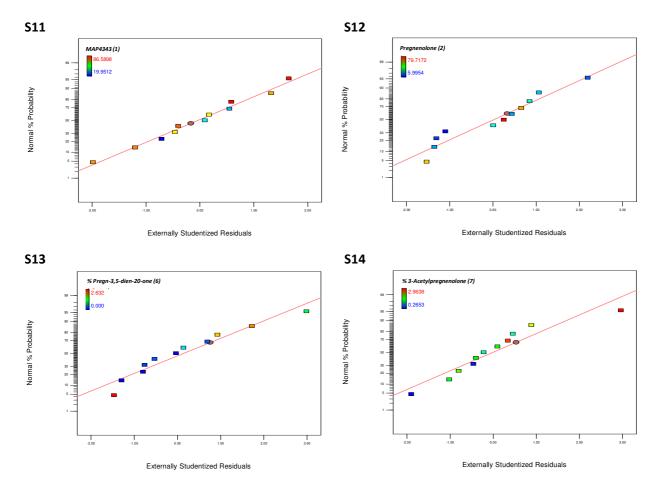
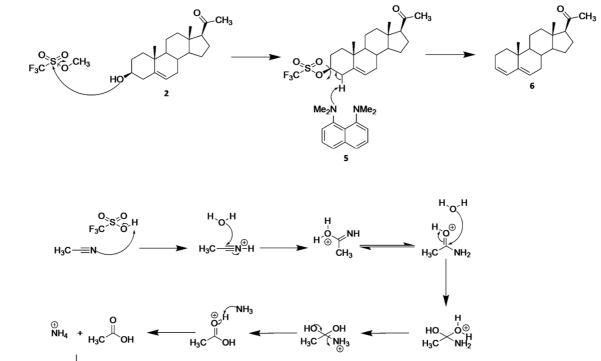




Fig. S7-S10. Contour plots for observable responses as relative percentages of MAP-4343 (1, S7), pregnenolone (2, S8), pregn-3,5-dien-20-one (6, S9) and 3-acetylpregnenolone (7, S10).

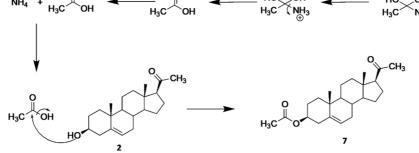
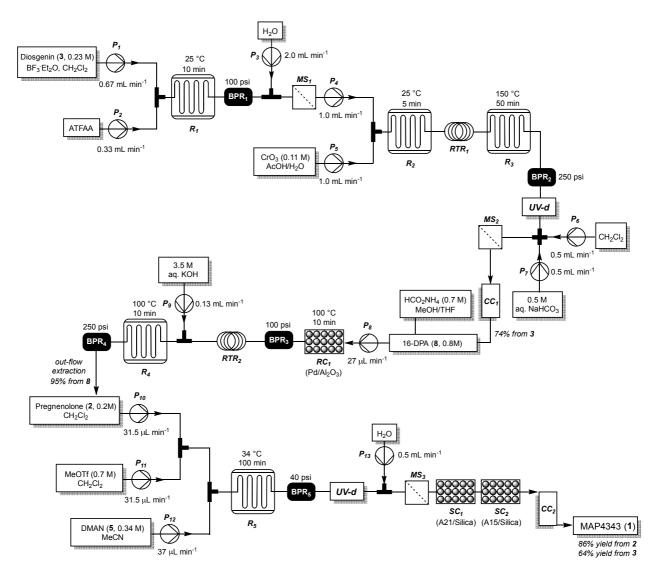
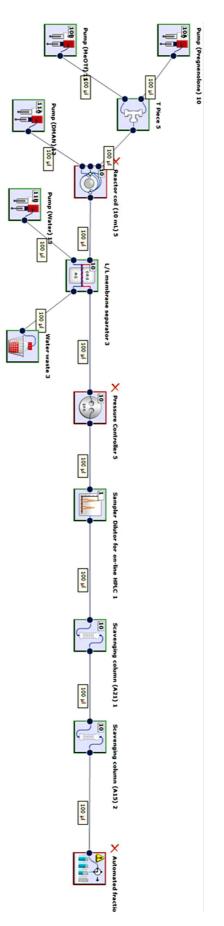


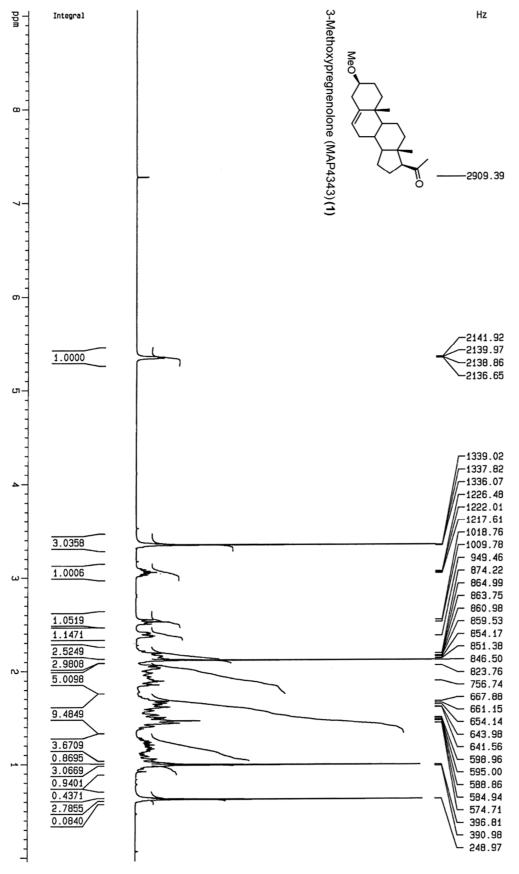
Fig. S11-S14. Normal plots of residuals relative to MAP-4343 (**1**, **S11**), pregnenolone (**2**, **S12**), pregn-3,5-dien-20-one (**6**, **S13**) and 3-acetylpregnenolone (**7**, **S14**).

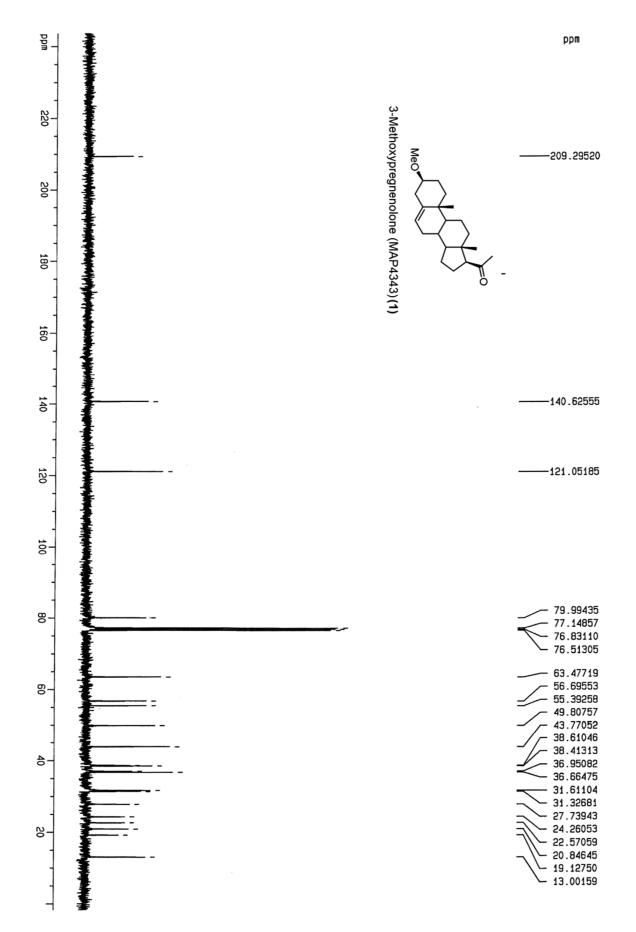


B


Α

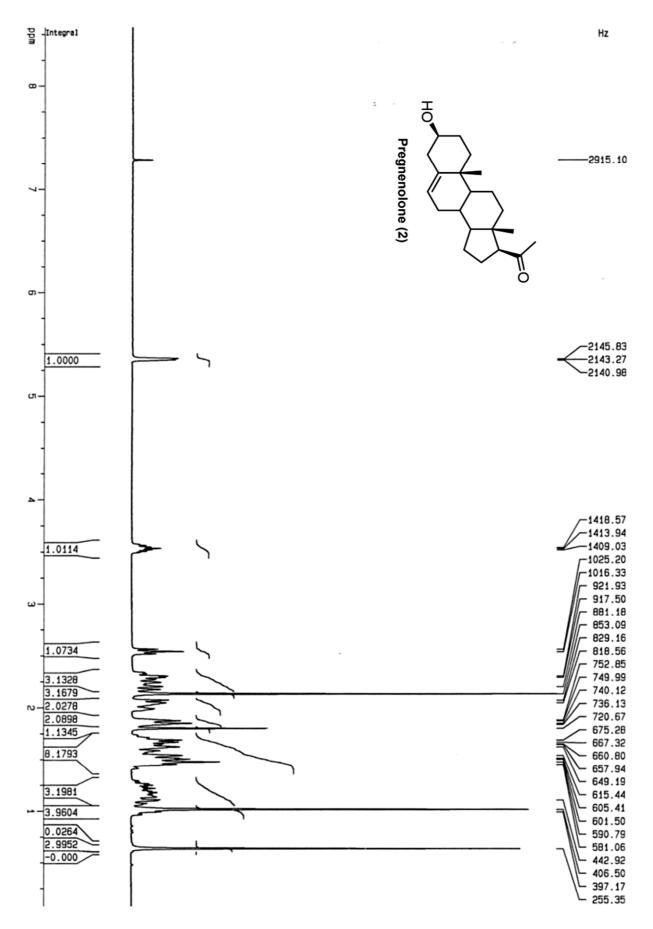
Scheme S1. Hypothesized mechanism for the formation of the side-products pregn-3,5-dien-20one (6) (A) and 3-acetylpregnenolone (7) (B).


Scheme S2. Integrated multistep flow synthesis of pregnenolone (2) and MAP4343 (1) from diosgenin (3). *BPR*₁₋₅: back pressure regulators; *CC*₁₋₂: automated flash chromatography; *MS*₁₋₃: liquid-liquid membrane separators; *P*₁₋₁₃: pumps; *R*₁₋₅: 10 mL reactor coils; *RC*₁: reactor column; *RTR*₁₋₂: residence time reactors; *SC*₁₋₂: scavenging columns; *UV-d*: UV detectors. The preparation of 16-DPA (8) from diosgenin (3) in flow reactors was reported in ref. 3.

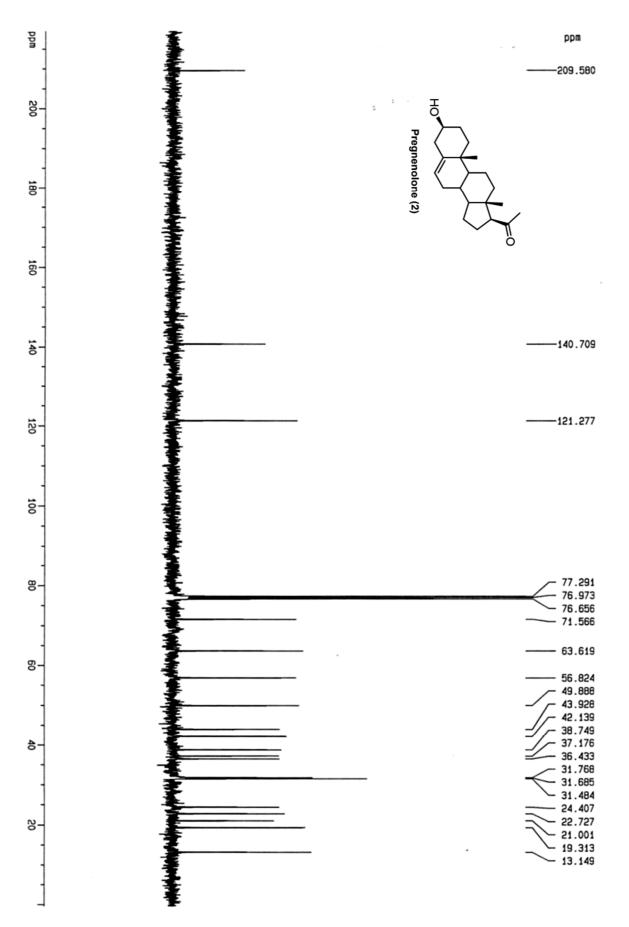

Scheme S3. Set-up for the continuous flow synthesis of MAP4343 designed by Asia Manager PC Software[™].

NMR Spectra

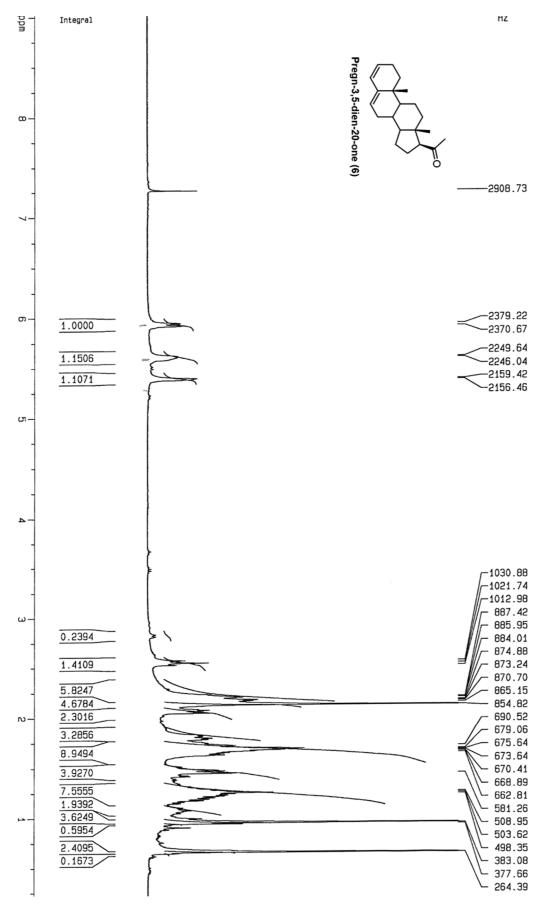
¹H-NMR (CDCl₃, 400 MHz) of 3-methoxypregnenolone (MAP4343, 1)

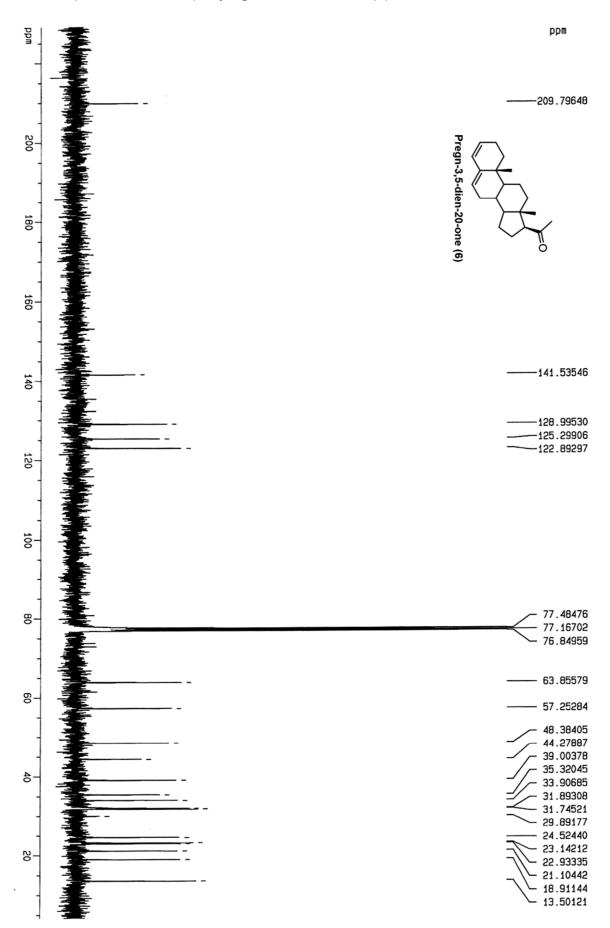


S15

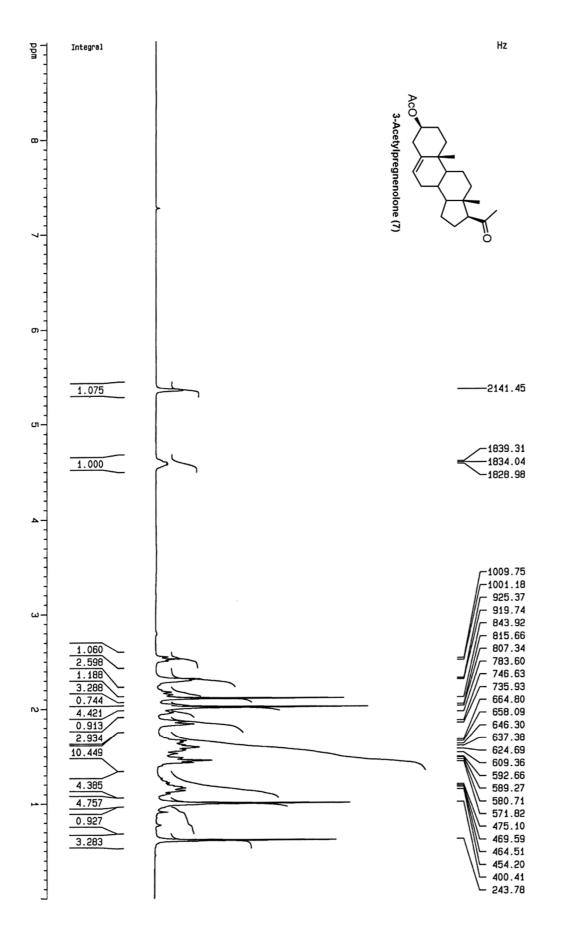


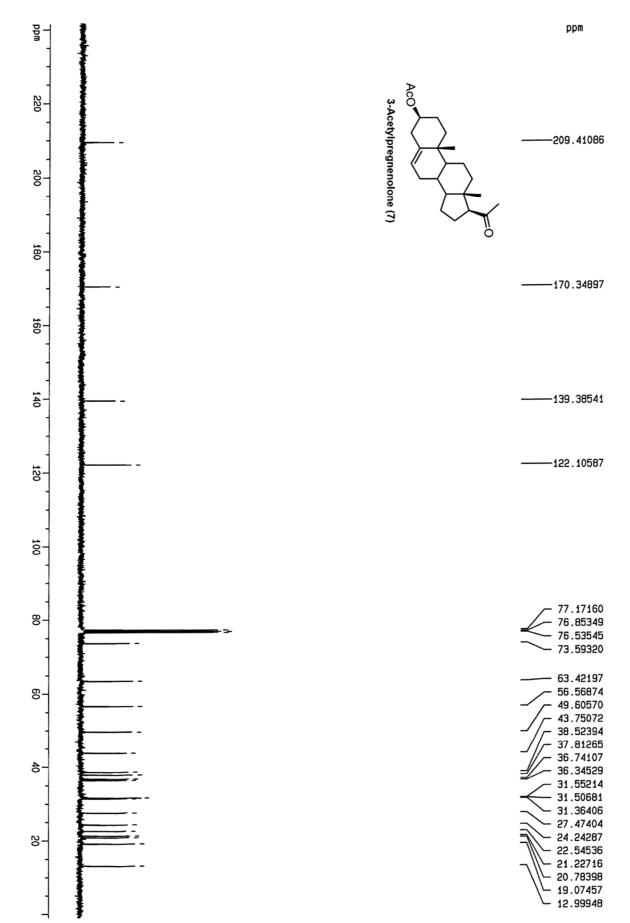
¹³C-NMR (CDCl₃, 100.6 MHz) of 3-methoxypregnenolone (MAP4343, 1)

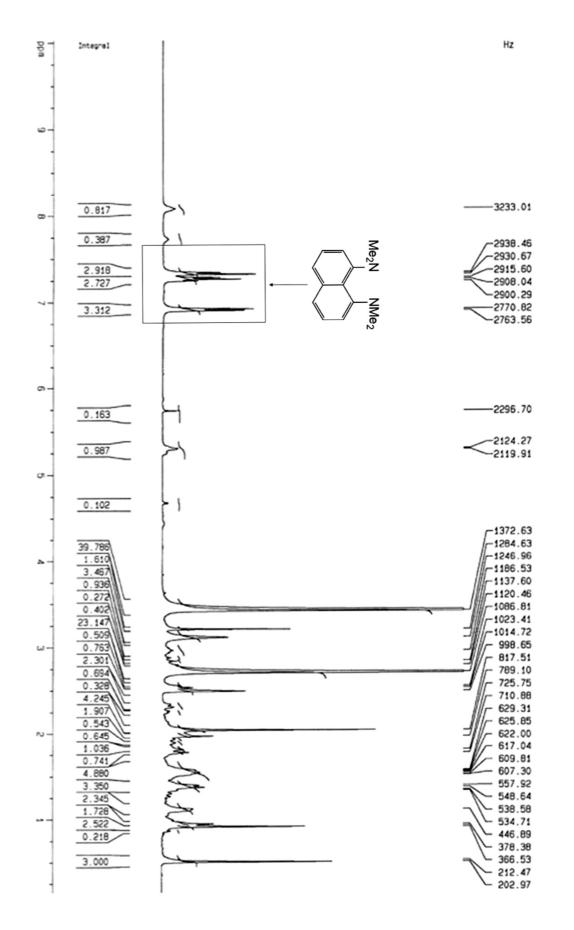

¹H-NMR (CDCl₃, 400 MHz) of pregnenolone (2)



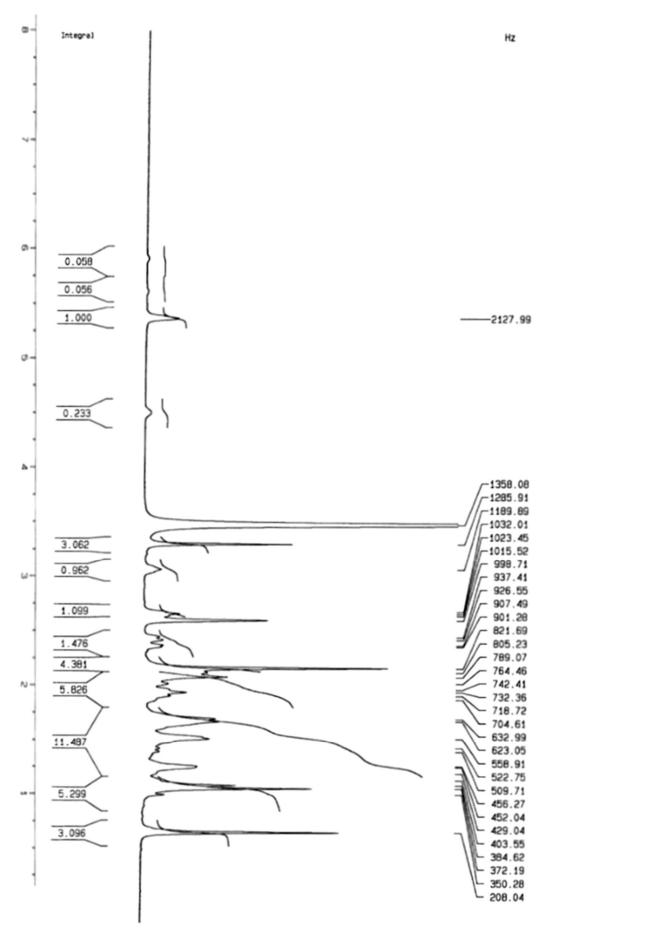
$^{\rm 13}\text{C-NMR}$ (CDCl₃, 100.6 MHz) of pregnenolone (2)


¹H-NMR (CDCl₃, 400 MHz) of pregn-3,5-dien-20-one (6)

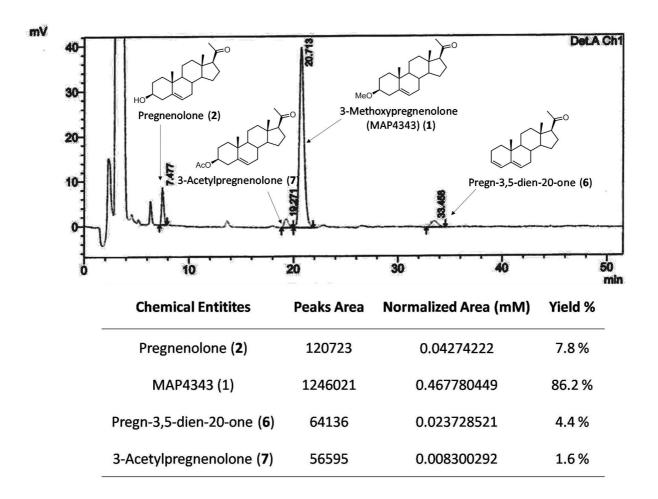


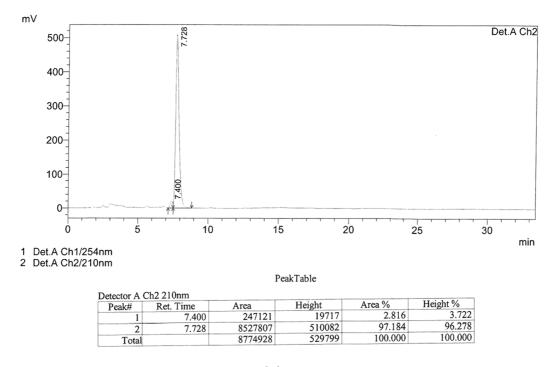

¹³C-NMR (CDCl₃, 100.6 MHz) of pregn-3,5-dien-20-one (6)

¹H-NMR (CDCl₃, 400 MHz) of 3-acetylpregnenolone (7)

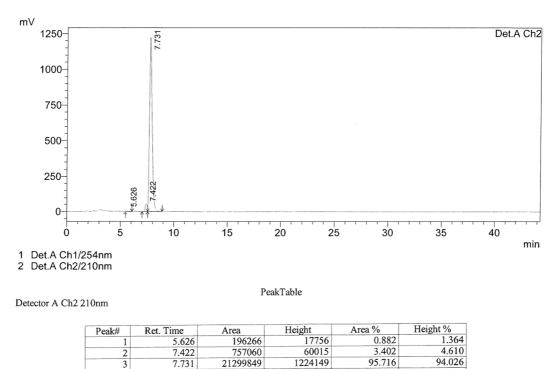


¹³C-NMR (CDCl₃, 100.6 MHz) of 3-acetylpregnenolone (7)


¹H-NMR (*d*⁶-DMSO, 400 MHz) of crude 3-methoxypregnenolone (MAP4343, 1) before scavenging


¹H-NMR (*d*⁶-DMSO, 400 MHz) of crude 3-methoxypregnenolone (MAP4343, 1) after scavenging

HPLC Analysis


HPLC chromatogram with peaks area, normalized area (mM) and yield (%) of crude MAP4343 (1) obtained by continuous flow synthesis after downstream operations

HPLC chromatogram of crude pregnenolone (2) obtained by catalytic transfer flow hydrogenation and alkaline hydrolysis of 16-dehydropregnenolone acetate (16-DPA, 8)

HPLC chromatogram of crude pregnenolone (2) obtained by Pd-catalyzed flow hydrogenation and alkaline hydrolysis of 16-dehydropregnenolone acetate (16-DPA, 8)

1301919

22253175

Total

100.000

100.000

References

- 1. Z. Szendi, P. Forgò and F. Sweet, *Steroids*, 1995, 60, 442–446.
- 2. M.-E. Rafestin-Oblin, M. Alami, H. Loosfelt, A. Hamze, A. J. Khan, A. Tikad, M. Lombes and J.-D. Brion, *WO Patent*, 2011138460, 2011.
- 3. V. Mancino, B. Cerra, A. Piccinno and A. Gioiello, *Org. Process Res. Dev.*, 2018, 22, 600–607.
- 4. J. N. Moorthy, N. Singhal and K. Senapati, *Tet. Lett.*, 2008, 49, 80–84.