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S1. Strength of M-A bond 
The M-A bond strength in the quenched-disordered lattice model was chosen to approximately match the 
Cr-C bond strength for an alkylchromium(III) site on SiO2. We started from a bis(silanolato)chromium(II) 
cluster model, which has been used in previous studies of Cr/SiO2 catalysts.1, 2 Labile siloxane coordination 
was modeled by binding a water molecule. The M-A bond strength was calculated according to Scheme 
S1 and density functional theory calculations, and was computed as εM-A = 160 kJ/mol. We chose a one-
electron redox pathway (as opposed to a two-electron redox pathway) to ensure a strong bond energy for 
the chemisorption step. We stress that the bond strength was chosen only to ensure a realistic model. The 
model is not intended make accurate predictions for Cr/SiO2 olefin polymerization catalysts. 
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Scheme S1: Reaction pathway to calculate Cr-C bond strength. 

DFT calculations were carried out using Gaussian16.3 All energies were calculated with the range-separated 
density functional, ωB97X-D.4 The def2-TZVP basis set was used for Cr5 and TZVP was used for C, H, O, 
and Si atoms.6 All minima have zero imaginary frequencies. The peripheral OH atoms of the cluster model 
were also held constrained to model the geometric constraints of an extended silica network. The peripheral 
atom constraints were found by optimizing the bare Cr(II) cluster. The same peripheral atom constraints 
were applied to structures I and II. Cartesian coordinates of the optimized clusters are tabulated below 
Table S1. 

Table S1: Spin contamination before (S2) and after annihilation (S2A) of highest spin contaminant; 
energies in Hartrees 

Species Energy S2 S2A 

I -2229.395021 6.0107 6.0000 
II -2308.613831 3.8158 3.7506 

C3H7 -157.7869992 0.7544 0.7500 
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Cartesian coordinates of optimized structures used to estimate M-A bond strength  
I 

O     1.528715  1.824430  0.017273 
O     0.329040  3.677023  1.481622 
O    -3.798037  2.422373  0.623959 
O    -2.437772  0.962573  2.367903 
H     1.471874  1.112840  0.626215 
H     0.721382  3.163392  2.193211 
H    -3.813726  2.949265  0.179675 
H    -3.058776  0.288005  2.079504 
Cr   -0.437283  4.457655  2.661415 
O     0.530001  4.130430  1.122581 
O    -2.025354  3.604722  2.371739 
O    -1.123096  2.190320  0.310740 
Si   -2.349940  2.320287  1.425008 
Si    0.314150  2.956189  0.007436 
O     0.963648  6.104979  2.702537 
H     0.804577  7.049654  2.679910 
H     1.377310  5.837656  1.865089 
C     0.720489  2.007273  3.871771 
C     0.399543  3.460992  4.187553 
H     1.291691  4.017253  4.491492 
H    -0.347290  3.537112  4.990328 
H     1.457606  1.942161  3.067310 
H    -0.170998  1.454563  3.568652 
H     1.144256  1.492268  4.740030 
 
 
 
 
 
 
 
 
 
 

 

II 

O    1.528715   1.824430  -0.017273 
O    0.329040   3.677023  -1.481622 
O   -3.798037   2.422373   0.623959 
O   -2.437772   0.962573   2.367903 
H    1.471874   1.112840   0.626215 
H    0.721382   3.163392  -2.193211 
H   -3.813726   2.949265  -0.179675 
H   -3.058776   0.288005   2.079504 
Cr  -0.583821   4.714397   2.500341 
O    0.579509   4.129526   1.136052 
O   -2.065920   3.613509   2.402040 
O   -1.121537   2.226881   0.331971 
Si  -2.356280   2.335183   1.444016 
Si   0.326075   2.970978   0.018794 
H    1.148930   6.972860   2.668851 
O    1.081087   6.020796   2.752306 
H    1.518486   5.602420   1.984661        
 
C3H7 

C    -2.607098   4.751562   -3.928794 
C    -3.579273   5.597963   -1.753988 
C    -3.191053   4.390545   -2.611791 
C    -2.379889   6.436179   -1.325945 
H    -1.985557   4.055188   -4.476072 
H    -4.086401   3.767304   -2.765517 
H    -4.282718   6.220844   -2.315828 
H    -4.116340   5.248218   -0.868301 
H    -1.680277   5.839589   -0.734938 
H    -1.836621   6.816586   -2.193793 
H    -2.687355   7.290288   -0.719788 
H    -2.492122   3.754728   -2.055856 
H    -2.905619   5.665313   -4.429382 
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S2. Derivation of apparent activation energy 
In this section, a formula for the apparent activation energy of a site, Ea(xi), is derived. The apparent 
activation energy for site i is given by 
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From eqns. (2) – (5), the turnover frequency (TOF) of a site, ri, can be expressed as  
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Taking the natural logarithm of the eqn. (S2), grouping temperature dependent terms, and simplifying yields 
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where β = 1/kBT. From eqn. (6), ΔH(xi) is temperature dependent through kBT. Taking the derivative of eqn. 
(S3) gives 
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Inserting eqn. (6) into ΔH(xi) to evaluate the derivative gives 
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Thus, Ea(xi) can be written as 

‡
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S3. Propagation of kernel regression model uncertainty in estimating ⟨Ea⟩k 
Site-averaged kinetics are estimated by importance sampling the activation energy distribution with Ea 
values obtained from the trained kernel regression model. Since errors in the kernel regression model 
propagate through the ⟨Ea⟩k calculation (beyond sampling error and error from ab initio calculations), the 
kernel regression model contributes additional errors. Here, we show that the regression errors, even when 
unbiased, will systematically bias the ⟨Ea⟩k estimate toward lower activation energy. We also show how 
this bias can be quantified and corrected to obtain ⟨Ea⟩k estimates with only sampling and ab initio 
calculation errors. Let the distribution of kernel regression activation energies be ρ(̃Êa). ρ(̃Êa) can be related 
to the Ea distribution, ρ(̃Ea), by 

.(  ( ) ( |ˆ ˆ) )a a a a aE dE E P E E       (S7) 

Here, P(Êa|Ea) is the distribution of the model-predicted activation barriers around the true activation 
barriers, and the integral is over the all possible Ea values. The site averaged activation energy from ρ(̃Êa) 
is 
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where β = 1/kBT, and T is the operating temperature of the catalyst. Combining eqns (S7) and (S8) yields 
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Assuming ρ(̃Êa) is normally distributed around ρ(̃Ea) with a standard deviation of σg gives: 
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Combining eqns (S9) and (S10) and simplifying yields: 
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The two integrals in Eq. 5 have closed-form solutions: 
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and 
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Introducing eqns. (S12) and (S13) into eqn. (S11) and simplifying gives 

 

2

 
)( )

ˆ
 

( )

( a

a

E
a a a g

a Ek
a a

dE E E e
E

dE E e





 








 





     (S14) 

From eqn. (S8), it can be seen that 
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Kernel regression errors (𝜎g) can be used to estimate the error in the kernel regression model predicted k-
weighted activation barrier (⟨Êa ⟩k) using eqn. (S9). We can estimate typical size of kernel regression errors 
using the training set error. 
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S4. Test set and training set statistics 
The set of randomly sampled sites used to train the kernel regression model should sufficiently sample the 
main support of ρ(̃Ea) to properly normalize ρ(̃Êa) for predicting kinetic properties. Once the main support 
of ρ(̃Ea) is sufficiently sampled, additional sites do not improve the normalization of ρ(̃Êa) and require 
additional, costly structure optimizations.  Fig. S1 shows the leave-one-out parity plot of the kernel 
regression plot trained on 25, 50, 75, and 100 randomly sampled sites. 

 

Fig. S1: Parity plot of kernel regression model trained on different initial pool sizes. An initial pool of 50 
randomly selected sites samples the main support of ρ(̃Ea). 
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Errors in the kernel regression model should be smaller than the width of ρ(̃Ea) to accurately importance 
sample ρ(̃Êa). Therefore, the initial pool should contain a set of sites with diverse local environments and 
activation energies to effectively train the kernel regression model. Residual distributions of all ~20,000 
sites are shown for the kernel regression model trained on 25, 50, 75, and 100 randomly sampled sites in 
Fig S2.  

 

Fig S2: Kernel regression model residual distribution for all ~20,000 sites with different initial pool sizes. 
For all initial pool sizes, the standard error is within 1.0 kJ/mol which is ~40 times smaller than the range 

of ρ(̃Êa). The standard error does not decrease for initial pool sizes greater than 50.  
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Fig S3: Distribution of residuals for iterations 0 (left) and 30 (right) of the importance learning algorithm. 

S5. Number of samples required to estimate Ẽa with the same precision E̅a 
The E̅a estimator from the importance learning algorithm (eqn. 15) quickly converges to the correct site 
averaged activation energy because sites are sampled with weights ρ(x)k(x). Alternatively, the Ẽa estimator 
randomly samples sites with weights ρ(x) and computes a ratio of exponential averages (eqn. 14).  The 
reweighted estimator will require many more samples to converge to a precise estimate. In this section, the 
relative variance for the Ẽa estimator is derived and the number of samples required to estimate Ẽa with the 
same level of confidence as E̅a is computed. 

From eqn. 14, Ẽa is computed by 
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Both  akE and k ̃ are random variables for a given sample size, so their ratio is also a random variable. 

Assuming k ̃and  akE  are independent and uncorrelated, the sample variance of Ẽa can be approximated by: 
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Evaluating the derivatives and dividing by Ẽa yields the relative sample variance 
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The relative sample variance can be related to the relative variance by the central limit theorem:7 



S10 
 





22 22 2

2 2 222

( ) ( )

1

( )
aa a k

EkEkE k k

a a a k
NkkE kE k E

 

   
    

   x x



      (S19) 

where N is the number of samples.  The right most equality with subscript ρ(x) indicates that (S19) estimates 
the relative variance in the Ea estimate as computed with a sample from ρ(x). The number of random 
samples required to match the uncertainty of the E̅a estimator from the importance learning algorithm is 
found by equating the relative uncertainties of the two estimators: 
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Inserting eqn. (S19) in the right hand side of (S20) and solving for N yields 
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The relative uncertainty in the E̅a estimator is (0.75 kJ/mol) / (40.5 kJ/mol) = 1.85 %. Since ρ(̃Ea) can be 

precisely calculated for our simple model, 
22 /

akE akE  and 
22 /k k  can be computed exactly. 

Evaluating eqn. (S21) gives 

 2( ) (28.1 41.2) 200,0000.0185N         (S22) 

Therefore, the reweighting estimator Ẽa requires about 200,000 sites for the same level of confidence that 
the importance learning estimator E̅a achieved with less than 100 sites.   
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