Supporting Information

Design guidelines for membrane-separated organic electrosynthesis: the case of adiponitrile electrochemical production

Daniela E. Blanco, Purnima A. Prasad, Kaylee Dunnigan, and Miguel A. Modestino*

Table of Contents

Membrane conductivity equilibration time	2
Flow cell dimensions	2
Permeability measurements at steady state	3
EIS measurements for membrane conductivity	4
SAXS holder design	5
References	6

Membrane conductivity equilibration time

Figure S1. Measurements of Nafion conductivity equilibration time for varying AN concentrations. The electrolyte for conductivity measurements contained 0.5 M Na₃PO₄, 0.02 M tetrabutylammonium hydroxide, and 0.03 M EDTA at 25 °C.

Flow cell dimensions

Figure S2. Dimensions of end plates, flow plates and flow pattern of the flow reactor

Permeability measurements at steady state

Figure S3. Effect of flow rate on the flux of organic species from cathodic to anodic chamber with Nafion 117. The catholyte contained 0.5 M Na₃PO₄, 0.02 M tetrabutylammonium hydroxide, and 0.03 M EDTA and 0.6 M AN. The anolyte consisted of 1 M H₂SO₄.

EIS measurements for membrane conductivity

Figure S4. (a) Bode diagram, (b) proposed equivalent circuit, and (c) Nyquist plot for 10 mV sinus amplitude from 7 MHz to 1 Hz. Electrolyte contained 0.5 M Na₃PO₄, 0.02 M TBA hydroxide, 0.03 M EDTA, and 1.3 M AN.

The equivalent circuit for membrane conductivity in solution with the four electrode setup described in the manuscript has been previously proposed¹, with the behavior characteristic of systems with two time constants. The circuit identifies the resistance for the membrane and solution (R_{m+s}), as well as resistance and capacitances of the electrical double layer (EDL) and diffusion in the boundary layer (DBL). R_{m+s} was thus found from the far right intercept of the Nyquist plot. Values were further corroborated with linear sweep voltammetry, obtaining the membrane resistance from the slope of the graph.

SAXS holder design

Figure S5. Design and main dimensions of sample holder for SAXS experiments

References

1. J. C. Jansen, *Encyclopedia of Membranes*, Springer-Verlag Berlin Heidelberg, Italy (2016).