An experimental, theoretical and kinetic-modeling

study of the gas-phase oxidation of ammonia

A. Stagni^{*1}, C. Cavallotti¹, S. Arunthanayothin², Y. Song^{2,3}, O. Herbinet², F. Battin-Leclerc², T.

Faravelli1

¹Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano,

Milano 20133, Italy

²Laboratoire Réactions et Génie des Procédés, CNRS-Université de Lorraine, 1 rue Grandville, 54000

Nancy, France

³Laboratoire PRISME, Université d'Orléans, Polytech Vinci – 45072 Orléans, France

Corresponding author: Alessandro Stagni; Email address: alessandro.stagni@polimi.it

Supplementary Material

Table of Contents

1	Amn	nonia CRDS infrared spectrum	3
2	Valio	lation of the kinetic mechanism	. 4
	2.1	Jet Stirred Reactor	.4
	2.1.1	Present work	.4
	2.1.2	Dagaut et al. [1]	. 5
	2.1.3	Rota et al. [2]	.6
	2.2	Flow reactor	. 8
	2.2.1	Present work	. 8
	2.2.2	Wargadalam et al. [3]	.9
	2.2.3	Song et al. [4]	10
	2.2.4	Hulgaard and Dam-Johansen [5]	11
	2.3	Shock tube	12
	2.3.1	Davidson et al. [6]	12
	2.3.2	Mathieu and Petersen [7]	14
	2.3.3	Shu et al. [8]	16
	2.4	Rapid-compression machine	17
	2.4.1	Pochet et al. [9]	17
	2.4.2	He et al. [10]	19
	2.5	Laminar flame speed	20
	2.5.1	Ronney [11]	20
	2.5.2	Liu et al. [12]	21
	2.5.3	Mei et al. [13]	22
	2.6	Burner-stabilized flame	23

	2.6.1	MacLean et al. [14]	
3	Referen	ces25	

1 Ammonia CRDS infrared spectrum

CRDS infrared spectrum recorded during the oxidation of ammonia under unreactive conditions (φ = 1, 500 K) over the range 6637-6643 cm⁻¹.

2 Validation of the kinetic mechanism

2.1 Jet Stirred Reactor

2.1.1 Present work

Type: isothermal Jet Stirred reactor

Model: Isothermal Perfectly-Stirred reactor

- 500 ppm NH₃ 2-4% O₂
- Balance gas: He
- P = 800 torr
- $\tau = 1.5 \text{ s}$

2.1.2 Dagaut et al. [1]

Type: Isothermal Jet Stirred reactor

Model: Isothermal Perfectly-Stirred reactor

- 1000 ppm NH₃ 12500 ppm O₂ 500-1000 ppm NO
- Balance gas: N₂
- P = 800 torr
- $\tau = 0.1 \text{ s}$

2.1.3 Rota et al. [2]

<u>Type</u>: isothermal Jet Stirred reactor

Model: Isothermal Perfectly-Stirred reactor

- Balance gas: N₂
- P = 1 atm
- $\tau = \frac{374}{T[K]}[s]$
 - a) 7200 ppm $NH_3 3000$ ppm NO 6000 ppm O_2
 - b) 7200 ppm $NH_3 3000$ ppm NO 2000 ppm O_2
 - c) 1920 ppm $NH_3 800$ ppm NO 2000 ppm O_2
 - d) 1920 ppm $NH_3 800$ ppm NO 1600 ppm O_2

2.2 Flow reactor

2.2.1 Present work

Type: Flow reactor with assigned temperature profile

Model: Plug-flow reactor with assigned temperature profile

- 1000 ppm NH₃ 2000 ppm O₂
- Balance gas: He
- P = 925 torr
- $\tau = 50$ ms (in the reactive zone)

2.2.2 Wargadalam et al. [3]

<u>Type</u>: Isothermal flow reactor

Model: Isothermal Plug-flow reactor

- 242 ppm NH₃ 10 % O₂
- Balance gas: N₂
- P = 1 atm
- $\tau = 339/T[K] s$

2.2.3 Song et al. [4]

Type: Flow reactor with assigned temperature profile

Model: Plug-flow reactor with assigned temperature profile

- Balance gas: He
 - a) $P = 30 \text{ bar} 729 \text{ ppm NH}_3 3.95\% \text{ O}_2 \tau = \frac{3100}{T[K]} \text{ [s] (in the reactive zone)} \text{Quartz}$
 - b) $P = 30 \text{ bar} 719 \text{ ppm NH}_3 4.03\% \text{ O}_2 \tau = \frac{1984}{T[K]} \text{ [s] (in the reactive zone)} \text{Alumina}$
 - c) $P = 100 \text{ bar} 789 \text{ ppm NH}_3 4.07\% \text{ O}_2 \tau = \frac{10330}{T[K]} \text{ [s] (in the reactive zone)} \text{Quartz}$

d)
$$P = 100 \text{ bar} - 789 \text{ ppm NH}_3 - 4.07\% \text{ O}_2 - \tau = \frac{6610}{T[K]} \text{ [s] (in the reactive zone)} - \text{Alumina}$$

2.2.4 Hulgaard and Dam-Johansen [5]

<u>Type</u>: Isothermal flow reactor

Model: isothermal plug-flow reactor

- 800 ppm $NH_3 2.5 \% O_2$
- Balance gas: N₂
- P = 106 kPa
- $\tau = 71/T[K] s$

2.3 Shock tube

2.3.1 Davidson et al. [6]

Model: constant-volume batch reactor

- <u>A</u>mmonia pyrolysis
- Balance gas: Ar
 - a) $T = 2294 \text{ K} P = 0.986 \text{ atm} 3000 \text{ ppm } \text{NH}_3$
 - b) $T = 2301 \text{ K} P = 1.028 \text{ atm} 2700 \text{ ppm NH}_3$
 - c) $T = 2652 \text{ K} P = 0.876 \text{ atm} 3000 \text{ ppm } \text{NH}_3$
 - d) $T = 2781 \text{ K} P = 0.902 \text{ atm} 2700 \text{ ppm NH}_3$

2.3.2 Mathieu and Petersen [7]

Model: constant-volume batch reactor

- Balance gas: Ar
 - a) P = 1.4 atm 99% Ar
 - b) P = 11 atm 99% Ar
 - c) P = 30 atm 99% Ar
 - d) $\phi = 1 98$ % Ar

2.3.3 Shu et al. [8]

Model: Batch reactor with assigned volume profile (converted from experimental pressure trace)

- NH₃/Air
 - a) $\phi = 0.5 P = 20-40$ bar
 - b) $\phi = 1 P = 20-40$ bar
 - c) $\phi = 2 P = 20-40$ bar

2.4 Rapid-compression machine

2.4.1 Pochet et al. [9]

Model: Batch reactor with assigned volume profile (converted from experimental pressure trace)

- 8.93% $NH_3-19.13\%~O_2-61.15\%~N_2-10.79\%~Ar$
 - a) $P_c = 65.5$ bar
 - b) $T_{in} = 353 \text{ K}$
 - c) $P_c = 43.4 \text{ bar}$

2.4.2 He et al. [10]

Model: Batch reactor with assigned volume profile (converted from experimental pressure trace)

- Balance gas: Ar
- $T_c = 310-370 \text{ K}$
 - a) $\phi = 0.5$
 - b) $\phi = 1$
 - c) $\phi = 1.5$

2.5 Laminar flame speed

2.5.1 Ronney [11]

Model: Premixed 1D laminar flame - radiation accounted for by optically-thin model

- NH₃/Air
- $T_{in} = 298 \text{ K}$
- P = 1 atm

2.5.2 Liu et al. [12]

Model: Premixed 1D laminar flame - radiation accounted for by optically-thin model

- NH₃/O₂
- $T_{in} = 298 \text{ K}$
- P = 1 atm

2.5.3 Mei et al. [13]

Model: Premixed 1D laminar flame - radiation accounted for by optically-thin model

- NH₃/O₂
- $T_{in} = 298 \text{ K}$
 - a) $35\% O_2 1$ atm
 - b) $35\% O_2 21 atm$
 - c) $35\% O_2 5 atm$
 - d) $\phi = 0.7 1$ atm
 - e) $\phi = 1 1$ atm
 - f) $\phi = 1.5 1$ atm

2.6 Burner-stabilized flame

- 2.6.1 MacLean et al. [14]
 - NH₃/O₂
 - P = 20 torr
 - v0 = 60.5 cm/s
 - a) $40\% NH_3 60\% O_2$
 - b) 57% $NH_3 43\% O_2$
 - c) $65\% NH_3 35\% O_2$

3 References

- P. Dagaut, A. Nicolle, Experimental and kinetic modeling study of the effect of SO2 on the reduction of NO by ammonia, Proc. Combust. Inst. 30 (2005) 1211–1218. doi:10.1016/j.proci.2004.07.029.
- [2] R. Rota, D. Antos, E.F. Zanoelo, S. Carrà, Experimental study and kinetic modelling of nitric oxide reduction with ammonia, Combust. Sci. Technol. 163 (2001) 25–47. doi:10.1080/00102200108952150.
- [3] V.J. Wargadalam, G. Löffler, F. Winter, H. Hofbauer, Homogeneous formation of NO and N2O from the oxidation of HCN and NH3 at 600-1000°C, Combust. Flame. 120 (2000) 465– 478. doi:10.1016/S0010-2180(99)00107-8.
- Y. Song, H. Hashemi, J.M. Christensen, C. Zou, P. Marshall, P. Glarborg, Ammonia oxidation at high pressure and intermediate temperatures, Fuel. 181 (2016) 358–365. doi:10.1016/j.fuel.2016.04.100.
- [5] T. Hulgaard, K. Dam- Johansen, Homogeneous nitrous oxide formation and destruction under combustion conditions, AIChE J. 39 (1993) 1342–1354. doi:10.1002/aic.690390811.
- [6] D.F. Davidson, K. Kohse- Höinghaus, A.Y. Chang, R.K. Hanson, A pyrolysis mechanism for ammonia, Int. J. Chem. Kinet. 22 (1990) 513–535. doi:10.1002/kin.550220508.
- [7] O. Mathieu, E.L. Petersen, Experimental and modeling study on the high-temperature oxidation of Ammonia and related NOx chemistry, Combust. Flame. 162 (2015) 554–570. doi:10.1016/j.combustflame.2014.08.022.
- [8] B. Shu, S.K. Vallabhuni, X. He, G. Issayev, K. Moshammer, A. Farooq, R.X. Fernandes, A shock tube and modeling study on the autoignition properties of ammonia at intermediate temperatures, Proc. Combust. Inst. (2019). doi:10.1016/j.proci.2018.07.074.
- [9] M. Pochet, V. Dias, B. Moreau, F. Foucher, H. Jeanmart, F. Contino, Experimental and

numerical study, under LTC conditions, of ammonia ignition delay with and without hydrogen addition, Proc. Combust. Inst. 37 (2019) 621–629. doi:10.1016/j.proci.2018.05.138.

- [10] X. He, B. Shu, D. Nascimento, K. Moshammer, M. Costa, R.X. Fernandes, Auto-ignition kinetics of ammonia and ammonia/hydrogen mixtures at intermediate temperatures and high pressures, Combust. Flame. (2019). doi:10.1016/j.combustflame.2019.04.050.
- P.D. Ronney, Effect of Chemistry and Transport Properties on Near-Limit Flames at Microgravity, Combust. Sci. Technol. 59 (1988) 123–141. doi:10.1080/00102208808947092.
- Q. Liu, X. Chen, J. Huang, Y. Shen, Y. Zhang, Z. Liu, The characteristics of flame propagation in ammonia/oxygen mixtures, J. Hazard. Mater. 363 (2019) 187–196. doi:10.1016/j.jhazmat.2018.09.073.
- [13] B. Mei, X. Zhang, S. Ma, M. Cui, H. Guo, Z. Cao, Y. Li, Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions, Combust. Flame. 210 (2019) 236–246. doi:10.1016/j.combustflame.2019.08.033.
- [14] D.I. Maclean, H.G. Wagner, The structure of the reaction zones of ammonia-oxygen and hydrazine-decomposition flames, in: Symp. Combust., 1967. doi:10.1016/S0082-0784(67)80213-3.