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1 Reactive CFD-DEM framework 

The fluidized bed is updated at each time step by solving sequentially the solid and the gas phases in 

the reactor.  

1.1 Solid Phase 

The solid phase is updated particle-wise considering the gas phase frozen. Each pellet composing the 

fluidized bed is tracked through the computational grid, which is fixed and particle-independent. The 

particle tracking is performed by solving the momentum and angular momentum balances on the 

catalytic pellet. Moreover, the ODE system, composed by the species mass, species sites and energy 

balances, is integrated for each catalytic pellet. In particular, the model of the particle neglects intra-

particle gradients thanks to the fine size of the particles adopted in this technology. 

The momentum (Eq.(S1)) and angular momentum balances (Eq.(S2)) on each particle are reported as 

follows: 

𝑑𝒗𝑝

𝑑𝑡
=
𝑭𝑑,𝑝 + 𝑭𝑏,𝑝 + 𝑭𝑐𝑜𝑙𝑙,𝑝

𝑚𝑝
+ 𝒈 (S1) 

𝑑𝒘𝑝

𝑑𝑡
=
∑[𝑅𝑝𝒏 ∧𝑭𝑐𝑜𝑙𝑙,𝑝]

𝐼𝑝
 (S2) 

where m, I, v, w are the mass, the moment of inertia, the velocity and angular velocity of the pth 

particle, 𝑭𝑐𝑜𝑙𝑙,𝑝 is the total collision force acting on the particle p, 𝑭𝑑,𝑝 is the drag force between the 

gas and the particle p, 𝑭𝑏,𝑝 is the buoyancy force, n is the unit normal to the direction of the total 

collisional force and 𝑅𝑝 is the particle p radius.  

The total collisional force acting on the generic particle p is computed by means of a soft-sphere 

approach1. According to this method, the collisions involving pth particle during a time step are first 

detected whenever particle p is overlapped with another one. Then, the collision force is computed 

for each detected collisional event as a function of the relative velocity and the magnitude of the 

overlap vector by means of a spring-slider-dashpot model2 (Eq.(S3)-(S4)).  
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  𝑭𝒂𝒃,𝒏 = (−𝒌𝒏𝜹𝒏

𝟑

𝟐 − 𝜼𝒏𝒗𝒂𝒃 ∙ 𝒏𝒂𝒃)𝒏𝒂𝒃 (S3) 

  𝑭𝒂𝒃,𝒕 = {
𝝁𝒄‖𝑭𝒂𝒃,𝒏‖                                                                         ‖𝑭𝒂𝒃,𝒕‖ > 𝝁𝒄‖𝑭𝒂𝒃,𝒏‖

−𝒌𝒕𝜹𝒕 − 𝜼𝒕(𝒗𝒂𝒃 − (𝒗𝒂𝒃 ∙ 𝒏𝒂𝒃)𝒏𝒂𝒃)                           ‖𝑭𝒂𝒃,𝒕‖ ≤ 𝝁𝒄‖𝑭𝒂𝒃,𝒏‖
 (S4) 

 

where 𝒗𝑎𝑏 is the relative velocity between the two colliding particles a and b, 𝒏𝑎𝑏 is the unit vector 

connecting the centers of a and b, 𝜇𝑐 is the friction factor of the slider and 𝑘 and 𝜂 are the spring 

stiffness and the damping coefficient of the dashpot which can be derived from the Young modulus 

E, the Poisson ratio 𝜈 and the restitution coefficient 𝑒 of the particles as proposed in 2. Subscripts n 

and t refer to the normal and tangential directions with respect to the plane normal to 𝒏𝑎𝑏.  

Finally, each collisional force vector is summed up to obtain the total force vector acting on particle 

p at that specific time step.  

The drag force (Eq.(S5)) is a function of a drag coefficient 𝛽 computed by means of the Gidaspow 

model3 (Eq.(S6)) and the relative velocity vector. In particular, the drag coefficient is a function of 

the magnitude of the relative velocity vector, the geometry of the particle and the gas fraction in the 

computational cell hosting the particle (𝜀𝑔), which is computed by means a Particle Centroid Method 

– PCM4.  

𝑭𝑑,𝑝 = 𝑉𝑝𝛽(𝑼𝑔 − 𝒗𝑝) (S5) 

 

𝛽 =

{
 
 

 
 
150(1 − 𝜀𝑔)

𝜀𝑔

𝜇𝑔

𝐷𝑝2
+ 1.75(1 − 𝜀𝑔)

𝜌𝑔

𝐷𝑝
‖𝑼𝑔 − 𝒗𝑝‖                𝜖 < 0.8

3

4
𝐶𝐷
𝜌𝑔

𝐷𝑝
‖𝑼𝑔 − 𝒗𝑝‖𝜀𝑔

−1.65                                                    𝜖 ≥ 0.8

 (S6) 

where 𝜇𝑔 is the gas dynamic viscosity, 𝐷𝑝 is the particle diameter, 𝑉𝑝 is the volume of the particle, 

𝜌𝑔 is the density of the gas phase at the particle position, 𝑼𝑔 − 𝒗𝑝 is the relative velocity between a 

generic particle p and the gas phase and  𝐶𝐷 is evaluated according to Schiller and Neumann5 

(Eq.(S7)): 
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𝐶𝐷 = {
24[1 + 0.15(𝜀𝑔𝑅𝑒𝑝)

0.687
]/(𝜀𝑔𝑅𝑒𝑝)                                                       𝑅𝑒𝑝 < 1000

0.44                                                                                               𝑅𝑒𝑝 ≥ 1000
 (S7) 

where 𝑅𝑒𝑝 is the particle Reynolds number based on the magnitude of the particle-gas relative 

velocity vector.  

The buoyancy force (Eq.(S8)) is computed as a function of the pressure gradient experienced by the 

gas surrounding the particle. 

𝑭𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦 = 𝑉𝑝∇𝑃 (S8) 

The particle species mass (Eq.(S9)) and species sites (Eq.(S10))balances, describing the coupling 

between gas-particle transfer phenomena and catalytic reactions, result into the following ODE 

system: 

𝜌𝑔,𝑝𝜀𝑝
𝑑𝜔𝑗,𝑝

𝑑𝑡
= 𝐾𝑐,𝑗𝑆𝑣,𝑝𝜌 (𝜔𝑗,𝑔 − 𝜔𝑗,𝑝) +∑𝜈𝑗,𝑛𝑟𝑛,𝑝𝑀𝑊𝑗

𝑁𝑅

𝑛=1

 (S9) 

𝑑𝜃𝑗,𝑝

𝑑𝑡
=
𝑅𝑗,𝑝
ℎ𝑒𝑡

𝜎𝑐𝑎𝑡
 (S10) 

where 𝜔𝑗, 𝐾𝑐,𝑗, 𝑀𝑊𝑗 and 𝜈𝑗,𝑛 are the mass fraction, the mass transfer coefficient, the molecular weight 

and the stoichiometry coefficient of the nth reaction of the jth species, 𝜀𝑝 is the porosity of the catalyst, 

𝜌𝑔,𝑝 is the average density of the perfect gas mixture in the catalyst and 𝜌 is the mean density between 

the mixture in the catalyst and the gas. 𝜃𝑗,𝑝 and  𝑅𝑗,𝑝
ℎ𝑒𝑡 are the coverage and the production rate due to 

heterogeneous reactions of the jth adsorbed species and 𝜎𝑐𝑎𝑡 is the concentration of active sites on 

the catalytic surface.  

The evaluation of the catalytic reaction rates is performed by means of the catalyticFOAM 

framework6 and they are expressed on the basis of the mean surface molar concentration in the pth 

particle. Both microkinetic and rate equation models can be adopted for the description of the catalytic 

chemistry. In case of a microkinetic model, the reaction rates 𝑟𝑛,𝑝 in the species mass balances are 

composed by only adsorption and desorption reactions. In case of rate equation kinetics, the site 
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balances are not solved and the reaction rates in the species mass balances represents the kinetics of 

the whole catalytic process by means of macro-reactions. 

According to the hierarchy of the methodology chosen, i.e. Euler-Lagrange CFD-DEM, the gas-

particle mass transfer is not quantified directly by means of the indefinite transport equations. Indeed, 

the computational cells are bigger than particles, thus the gas-particle interface is not described in 

detail. However, lower hierarchy DNS has proven the validity7 of the empirical Gunn correlation8 

(Eq. (S11)) used to compute the interphase mass transfer coefficient 𝐾𝑐,𝑗 in this work. In particular, 

the Gunn correlation (Eq.(S11)) has been used to compute the Sherwood Number, from which the 

gas-particle mass transfer coefficient has been derived. 

𝑆ℎ𝑗 = (7 − 10𝜀𝑔 + 5𝜀𝑔
2)(1 + 0.7𝑅𝑒𝑝

0.2𝑆𝑐𝑗
0.33) + (1.33 − 2.4εg + 1.2εg

2)Rep
0.7𝑆𝑐𝑗

0.33 (S11) 
   

where 𝑆𝑐𝑗 is the Schmidt Number related to species j.  

1.2 Gas phase 

Once the solid phase is updated, the gas-particle momentum and mass transfer contributions are 

computed for each particle in each cell. By doing so, the interphase momentum and mass source fields 

are computed and exploited into the gas governing equations (Eq.(S12)-(S14)), solved by means of a 

segregated approach and reported in the following: 

𝜕(𝜀𝑔𝜌𝑔)

𝜕𝑡
+ ∇ ∙ (𝜀𝑔𝜌𝑔𝑼𝑔) = 0 (S12) 

𝜕(𝜀𝑔𝜌𝑔𝑼𝑔)

𝜕𝑡
+ ∇ ∙ (𝜀𝑔𝜌𝑔𝑼𝑔𝑼𝑔) = −𝜀𝑔∇𝑃 − ∇ ∙ (εg�̿�) + 𝜀𝑔𝜌𝑔𝒈 + 𝑺𝑈 (S13) 

𝜕(𝜀𝑔𝜌𝑔𝜔𝑗,𝑔)

𝜕𝑡
+ ∇ ∙ (𝜀𝑔𝜌𝑔𝑼𝑔𝜔𝑗,𝑔) = −∇ ∙ (εg𝜌𝑔Γ𝑗∇𝜔𝑗,𝑔) + 𝑅𝑗

ℎ𝑜𝑚 + 𝑺𝜔𝑗 (S14) 

 

where 𝑼𝑔 is the gas velocity, P is the pressure, g is the gravity vector, 𝑺𝑈 refers to the gas-solid 

momentum transfer and �̿� is the Newtonian stress tensor.  Γ𝑗, 𝑅𝑗
ℎ𝑜𝑚 and 𝑺𝜔𝑗 are the mixture diffusivity, 

the production rate due to the homogeneous reactions in the gas phase and the gas-solid mass tranfer 

of the jth species. The evaluation of homogeneous reaction rates is performed by means of 



6 

 

openSMOKE++ framework9. Nevertheless, they have not been accounted for in this work. The 

energy balances are implemented in the framework and illustrated in our previous paper10. However, 

they are not herein reported since only isothermal simulations has been performed in this work. 

 

2 Computational domain and numerical methods 

The meshes used in the simulation of the small test reactor and the million-particle lab scale reactor 

simulations are herein described along with the numerical methods employed.  

2.1 Test Reactor 

Fig. S.1 shows the computational domain employed for the test reactor.  

   

a) b) c) 
Figure S.1. Computational grid adopted for the simulation of the methanation and steam reforming test reactors: 3D 

view (a), section parallel to the flow (b) and section normal to the flow (c) 

 

It consists of 5760 cells distributed as follows: 24 cells along the width, 120 cells along the height 

and 2 along the depth. The mesh consists of hexahedra and it is perfectly orthogonal.  

Pressure-Implicit with Splitting of Operators (PISO) loop with 3 pressure correctors and no non-

orthogonal corrections is employed to solve the pressure-velocity coupling. 

The discretization schemes available in the OpenFOAM framework have been used. Among these 

schemes, the gradient operator has been discretized with the cellLimited Gauss linear scheme, the 
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divergence operator with the second order Gauss LimitedLinear scheme and the Gauss Linear 

Corrected scheme for Laplacian operator. A forward Euler scheme is employed for the temporal 

discretization. 

 

2.2 Million-Particle Lab Scale Reactor 

Fig. S.2 shows the computational domain employed for the lab scale reactor.  

  
 

a) b) c) 
Figure S.2. Computational grid adopted for the simulation of the methanation million particle reactor: 3D view (a), 

section parallel to the flow (b) and section normal to the flow (c) 

 

It consists of 288,000 cells where 20 cells are along the radius while 258 cells along the height. The 

mesh has a maximum non-orthogonality of 29 (average 6) and a maximum skewness factor of 1.02. 

A PISO loop with 3 pressure correctors has been used to solve the pressure-velocity coupling. Non-

orthogonal corrections are not used due to the low degree of non-orthogonality (i.e. < 40). 

The discretization schemes available in the OpenFOAM framework have been used. Among these 

schemes, the gradient operator has been discretized with the cellLimited Gauss linear scheme, the 

divergence operator with the second order Gauss LimitedLinear scheme and the Gauss Linear 

Corrected scheme for Laplacian operator. A forward Euler scheme is employed for the temporal 

discretization. 
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3 Parametrical analysis of the effect of 𝒚𝒊,𝒎𝒊𝒏 

The variable normalization is carried out according to a logarithmic scale as reported in Eq. (2) in the 

manuscript. In this case, it is necessary to define a value of 𝑦𝑖,𝑚𝑖𝑛 when the actual minimum value of 

the variable is equal to zero, to avoid numerical issues with the logarithm. In this view, the selected 

value of 𝑦𝑖,𝑚𝑖𝑛 might affect the results of the binning procedure and eventually the accuracy of the 

Particle Agglomeration techniques. Hereby, different values of 𝑦𝑖,𝑚𝑖𝑛 have been tested in the test 

reactor to assess the effect on the simulation results. Three different values, i.e. 10-5, 10-15 and 10-20, 

has been tested. Fig. S.3 shows the average mass fractions in the bed for different 𝑦𝑖,𝑚𝑖𝑛. A negligible 

effect of the minimum value is observed when a sufficiently small value (< 10-5) is considered. 

 

Figure S.3. Species mass fraction for the methanation system along the test reactor evaluated by using the CP & PA 

algorithm for different values of the 𝒚𝒊,𝒎𝒊𝒏 

 

References 

 

1. Cundall, P. A. & Strack, O. D. L. A discrete numerical model for granular assemblies. 

Géotechnique 29, 47–65 (1979). 

2. Tsuji, Y., Tanaka, T. & Ishida, T. Lagrangian numerical simulation of plug flow of 

cohesionless particles in a horizontal pipe. Powder Technol. 71, 239–250 (1992). 

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.00

0.05

0.10

0.15

0.20

CO

CO2

2·H2

 yi,min = 10-5

 yi,min = 10-15

 yi,min = 10-20

s
p
e
c
ie

s
 m

a
s
s
 f

ra
c
ti
o
n
 <

w
>

 [
-]

simulation time [s]

CH4



9 

 

3. Gidaspow, D. Multiphase flow and fluidization : continuum and kinetic theory descriptions. 

(Academic Press, 1994). 

4. Norouzi, H. R., Zarghami, R., Sotudeh-Gharebagh, R. & Mostoufi, N. Coupled CFD-DEM 

Modeling: Formulation, Implementation and Application to Multiphase Flows. Coupled CFD-

DEM Modeling: Formulation, Implementation and Application to Multiphase Flows (2016). 

doi:10.1002/9781119005315 

5. Schiller, L. & Naumann, Z. A drag coefficient correlation. Z.Ver.Deutsch.Ing 77, 318–320 

(1933). 

6. Maestri, M. & Cuoci, A. Coupling CFD with detailed microkinetic modeling in heterogeneous 

catalysis. Chem. Eng. Sci. 96, 106–117 (2013). 

7. Tavassoli, H., Peters, E. A. J. F. & Kuipers, J. A. M. Direct numerical simulation of non-

isothermal flow through dense bidisperse random arrays of spheres. Powder Technol. 314, 

291–298 (2017). 

8. Gunn, D. J. Transfer of heat or mass to particles in fixed and fluidised beds. Int. J. Heat Mass 

Transf. 21, 467–476 (1978). 

9. Cuoci, A., Frassoldati, A., Faravelli, T. & Ranzi, E. OpenSMOKE++: An object-oriented 

framework for the numerical modeling of reactive systems with detailed kinetic mechanisms. 

Comput. Phys. Commun. 192, 237–264 (2015). 

10. Uglietti, R., Bracconi, M. & Maestri, M. Coupling CFD-DEM and microkinetic modeling of 

surface chemistry for the simulation of catalytic fluidized systems. React. Chem. Eng. 3, 527–

539 (2018). 

 


